Рубрика: "01.01.00 Математика"
doi: 10.18698/2309-3684-2015-4-337
Описан ряд новых точных решений с простым, обобщенным и функциональным разделениями переменных одномерных нелинейных реакционно-диффузионных уравнений с запаздывающим аргументом и переменными коэффициентами переноса. Все представленные уравнения содержат одну, две или три произвольные функции одного аргумента. Решения с обобщенным разделением переменных находят в виде , где функции определяют в ходе анализа с использованием новой модификации метода функциональных связей. Некоторые из результатов обобщены на случай нелинейных реакционно-диффузионных уравнений с переменным запаздыванием. Также представлены точные решения более сложных трехмерных реакционно-диффузионных уравнений с запаздыванием. Большинство полученных решений содержат свободные параметры и могут быть использованы для решения некоторых задач, а также для тестирования приближенных аналитических и численных методов решения нелинейных уравнений в частных производных с запаздыванием.
Полянин А. Д., Журов А. И. Нелинейные реакционно-диффузионные уравнения с запаздыванием и переменными коэффициентами переноса: решения с обобщенным и функциональным разделением переменных. Математическое моделирование и численные методы, 2015, №4 (8), c. 3-37
doi: 10.18698/2309-3684-2016-2-2438
Рассмотрена математическая модель теплообменного процесса, протекающего в тонкостенных криволинейных оболочках турбомашин. Предложен алгоритм расчета теплового состояния на граничных поверхностях оболочки и покрытия согласно требуемому тепловому условию. Представлены результаты расчета распределения температур при заданном температурном поле на наиболее термонагруженной поверхности оболочки в результате теплового воздействия.
Андрианов И. К., Гринкруг М. С. Параметрическая идентификация математической модели теплообменного процесса для тонкостенных криволинейных оболочек турбомашин. Математическое моделирование и численные методы, 2016, №2 (10), c. 24-38
519.612.2 Анализ эффективности итерационных методов решения систем линейных алгебраических уравнений
doi: 10.18698/2309-3684-2014-4-3752
Для выбора оптимального в смысле вычислительной эффективности итерацион ного метода решения систем линейных алгебраических уравнений, возникающих при дискретизации дифференциальных уравнений в частных производных, помимо скорости сходимости следует учитывать такие характеристики системы и метода, как число обусловленности, коэффициент сглаживания, показатель «затратности». Последние две характеристики вычисляют по коэффициентам усиления гармоник, которые позволяют судить о сглаживающих свойствах итерационного метода и его «затратности», т. е. о том, насколько хуже метод подавляет низкочастотные компоненты ошибки по сравнению с высокочастотными. Предложен способ определения коэффициентов усиления гармоник, основанный на использовании дискретного преобразования Фурье. В качестве примера приведён анализ эффективности метода BiCGStab c ILU и многосеточным предобусловливанием при решении разностных аналогов уравнений Гельмгольца и Пуассона.
Марчевский И. К., Пузикова В. В. Анализ эффективности итерационных методов решения систем линейных алгебраических уравнений. Математическое моделирование и численные методы, 2014, №4 (4), c. 37-52
doi: 10.18698/2309-3684-2016-3-7992
Рассмотрены многолетние колебания уровня Каспийского моря как выходного процесса нелинейной системы, обладающей положительной и отрицательными обратными связями. Предложена модель Каспийского моря, учитывающая отток морской воды в залив Кара-Богаз-Гол. Получена плотность распределения уровня моря в виде решения соответствующего уравнения Фоккера — Планка — Колмогорова. Показано, что бимодальная плотность распределения вероятности уровня моря, отвечающая бессточному Каспию (при отсеченном заливе Кара-Богаз-Гол), переходит в одномодальную в случае одновременного действия зависимостей испарения и оттока морской воды в залив Кара-Богаз-Гол от уровня моря.
Фролов А. В. Моделирование влияния оттока в залив Кара-Богаз-Гол на плотность распределения вероятности уровня Каспийского моря. Математическое моделирование и численные методы, 2016, №3 (11), c. 79-92
519.8 Стохастические модели дуэльного боя двух единиц
doi: 10.18698/2309-3684-2016-2-6984
На основе теории непрерывных марковских процессов разработаны модели дуэльного боя двух единиц. Получены расчетные формулы для вычисления основных показателей боя. Установлено, что упреждающий удар одной из участвующих в бою единиц оказывает существенное влияние на исход боя близких по силам единиц и незначительное влияние, если одна из единиц имеет значительное превосходство. Показано, что использование модели с постоянными эффективными скорострельностями может привести к существенным ошибкам при оценке его результатов. Установлено, что упреждающий удар в совокупности с более высокой степенью роста эффективной скорострельности может в отдельных случаях компенсировать более чем двукратное начальное превосходство противника. Показана возможность использования аппроксимаций эффективных скорострельностей боевых единиц различными функциями времени боя.
Чуев В. Ю., Дубограй И. В. Стохастические модели дуэльного боя двух единиц. Математическое моделирование и численные методы, 2016, №2 (10), c. 69-84
519.63 О построении параллельных многосеточных алгоритмов
doi: 10.18698/2309-3684-2015-2-105120
Рассмотрены основные направления развития параллельных классических многосеточных алгоритмов и их характерные недостатки. На примере универсальной многосеточной технологии показана возможность эффективного распараллеливания сглаживающих итераций на уровнях с грубыми сетками; многосеточная структура использована для построения гибридного многосеточного метода. Приведены оценки ускорения и эффективности различных параллельных многосеточных алгоритмов, а также результаты вычислительных экспериментов.
Мартыненко С. И. О построении параллельных многосеточных алгоритмов. Математическое моделирование и численные методы, 2015, №2 (6), c. 105-120
519.237.07 Факторное моделирование с помощью нейронной сети
doi: 10.18698/2309-3684-2016-2-85103
Проведено факторное моделирование артериальной гипертензии начальной стадии с помощью метода факторизации на базе нейронной сети и алгоритма обратного распространения ошибки. Этот метод факторизации является альтернативой классическому факторному анализу. Алгоритм построения факторной структуры на базе нейронной сети был реализован программно. Представлен обзор данного метода факторизации. Данный метод был усовершенствован для проведения факторного вращения и получения интерпретабельного решения. Факторная структура артериальной гипертензии, полученная с помощью данного метода факторизации, находятся в соответствии с результатами факторного моделирования посредством других методов.
Шовин В. А., Гольтяпин В. В. Факторное моделирование с помощью нейронной сети. Математическое моделирование и численные методы, 2016, №2 (10), c. 85-103
doi: 10.18698/2309-3684-2016-4-3446
Для моделирования трубопроводных систем совершен переход от методов, основанных на уравнениях массового баланса, базирующихся на первом и втором законах Кирхгофа, к математическому описанию гидравлической сети с помощью дискретизации уравнения неразрывности, для чего был применен метод контрольного объема. Представлено расширение разработанного метода контрольного объема для расчета нестационарных процессов потокораспределения в гидравлических сетях. Данное расширение метода разработано для медленно протекающих процессов в гидравлических сетях и не подходит для расчета быстро протекающих местных процессов, таких как гидроудар. Метод успешно апробирован на примере решения нескольких тестовых задач.
Волков В. Ю., Голибродо Л. А., Зорина И. Г., Кудрявцев О. В., Крутиков А. А., Скибин А. П. Применение метода контрольного объема для расчета нестационарных процессов в трубопроводных системах. Математическое моделирование и численные методы, 2016, №4 (12), c. 34-46
doi: 10.18698/2309-3684-2015-4-3852
Предложен метод расчета давления на поверхности упругой цилиндрической оболочки в период погружения и обтекания ее ударной волной. Для слабых ударных волн проведена сравнительная оценка точного решения с имеющимися приближенными решениями. Оценивалось влияние волны излучения вследствие деформации оболочки на величину давления на ее поверхности.
Дубровин В. М., Бутина Т. А., Полякова Н. С. Моделирование процесса взаимодействия ударной волны с цилиндрической оболочкой с учетом волны излучения. Математическое моделирование и численные методы, 2015, №4 (8), c. 38-52