Рубрика: "01.01.00 Математика"



519.237.07 Факторное моделирование с помощью нейронной сети

Шовин В. А. (Омский филиал Федерального государственного бюджетного учреждения науки Института математики им. С.Л. Соболева Сибирского отделения Российской академии наук), Гольтяпин В. В. (Омский филиал Федерального государственного бюджетного учреждения науки Института математики им. С.Л. Соболева Сибирского отделения Российской академии наук)


doi: 10.18698/2309-3684-2016-2-85103


Проведено факторное моделирование артериальной гипертензии начальной стадии с помощью метода факторизации на базе нейронной сети и алгоритма обратного распространения ошибки. Этот метод факторизации является альтернативой классическому факторному анализу. Алгоритм построения факторной структуры на базе нейронной сети был реализован программно. Представлен обзор данного метода факторизации. Данный метод был усовершенствован для проведения факторного вращения и получения интерпретабельного решения. Факторная структура артериальной гипертензии, полученная с помощью данного метода факторизации, находятся в соответствии с результатами факторного моделирования посредством других методов.


Шовин В. А., Гольтяпин В. В. Факторное моделирование с помощью нейронной сети. Математическое моделирование и численные методы, 2016, №2 (10), c. 85-103



517.9+532+536 Нелинейные реакционно-диффузионные уравнения гиперболического типа с запаздыванием: точные решения, глобальная неустойчивость

Полянин А. Д. (Институт проблем механики им. А.Ю. Ишлинского РАН), Сорокин В. Г. (Институт проблем механики им. А.Ю. Ишлинского РАН), Вязьмин А. В. (Московский государственный машиностроительный университет)


doi: 10.18698/2309-3684-2014-4-5373


Исследованы нелинейные гиперболические реакционно-диффузионные уравнения с переменным коэффициентом переноса при наличии запаздывания. Приведены некоторые точные решения с обобщенным разделением переменных. Большинство рассматриваемых уравнений содержат функциональный произвол. Получены условия глобальной нелинейной неустойчивости решений широкого класса систем гиперболических реакционно-диффузионных уравнений с запаздыванием. Показано, что при выполнении условий неустойчивости задачи с начальными данными и некоторые начально-краевые задачи с запаздыванием являются некорректными по Адамару. Решена обобщенная задача Стокса с периодическим граничным условием, описываемая линейным диффузионным уравнением с запаздыванием.


Полянин А. Д., Сорокин В. Г., Вязьмин А. В. Нелинейные реакционно-диффузионные уравнения гиперболического типа с запаздыванием: точные решения, глобальная неустойчивость. Математическое моделирование и численные методы, 2014, №4 (4), c. 53-73



519.248 Проверка справедливости модели Кокса по нескольким прогрессивно цензурированным выборкам

Тимонин В. И. (МГТУ им.Н.Э.Баумана), Тянникова Н. Д. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2017-1-102117


Предложен непараметрический критерий типа Кифера — Гихмана для проверки справедливости модели Кокса по нескольким прогрессивно цензурированным выборкам. По каждой из выборок в качестве оценок функции надежности использованы оценки Каплана — Мейера. Доказано, что при справедливости гипотезы в качестве приближения асимптотического распределения статистики критерия может быть применено распределение Кифера — Гихмана. Разработан метод вычисления точных распределений статистики на основе модели случайного блуждания частицы по многомерному массиву ячеек. Приведены таблицы полученных значений вероятностей точных распределений предложенной статистики для широкого набора возможных значений объемов выборок. Методами статистического моделирования показана состоятельность метода оценки параметров Кокса, основанного на минимизации статистики. Представлены гистограммы полученных оценок для экспоненциального распределения наработок до отказа. Результаты исследования находят применение при анализе результатов испытаний резервированных технических систем различной кратности, функционирующих в различных условиях эксплуатации.
Анализируемые системы используются во всех отраслях — от машиностроительных до радиоэлектронных.


Тимонин В. И., Тянникова Н. Д. Проверка справедливости модели Кокса по нескольким прогрессивно цензурированным выборкам. Математическое моделирование и численные методы, 2017, №1 (13), c. 102-117



536.2(075) Применение метода контрольного объема для расчета нестационарных процессов в трубопроводных системах

Волков В. Ю. (АО ОКБ "ГИДРОПРЕСС"), Голибродо Л. А. (АО ОКБ "ГИДРОПРЕСС"), Зорина И. Г. (МГТУ им.Н.Э.Баумана), Кудрявцев О. В. (АО ОКБ "ГИДРОПРЕСС"), Крутиков А. А. (АО ОКБ "ГИДРОПРЕСС"), Скибин А. П. (АО ОКБ "ГИДРОПРЕСС")


doi: 10.18698/2309-3684-2016-4-3446


Для моделирования трубопроводных систем совершен переход от методов, основанных на уравнениях массового баланса, базирующихся на первом и втором законах Кирхгофа, к математическому описанию гидравлической сети с помощью дискретизации уравнения неразрывности, для чего был применен метод контрольного объема. Представлено расширение разработанного метода контрольного объема для расчета нестационарных процессов потокораспределения в гидравлических сетях. Данное расширение метода разработано для медленно протекающих процессов в гидравлических сетях и не подходит для расчета быстро протекающих местных процессов, таких как гидроудар. Метод успешно апробирован на примере решения нескольких тестовых задач.


Волков В. Ю., Голибродо Л. А., Зорина И. Г., Кудрявцев О. В., Крутиков А. А., Скибин А. П. Применение метода контрольного объема для расчета нестационарных процессов в трубопроводных системах. Математическое моделирование и численные методы, 2016, №4 (12), c. 34-46



519.63 О построении параллельных многосеточных алгоритмов

Мартыненко С. И. (ФГУП «Центральный институт авиационного моторостроения имени П.И. Баранова»)


doi: 10.18698/2309-3684-2015-2-105120


Рассмотрены основные направления развития параллельных классических многосеточных алгоритмов и их характерные недостатки. На примере универсальной многосеточной технологии показана возможность эффективного распараллеливания сглаживающих итераций на уровнях с грубыми сетками; многосеточная структура использована для построения гибридного многосеточного метода. Приведены оценки ускорения и эффективности различных параллельных многосеточных алгоритмов, а также результаты вычислительных экспериментов.


Мартыненко С. И. О построении параллельных многосеточных алгоритмов. Математическое моделирование и численные методы, 2015, №2 (6), c. 105-120



531.36:521.1 Моделирование поиска стационарных орбит космической станции в окрестности астероида сжатой формы

Родников А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-3-110118


Предложен численно-аналитический алгоритм поиска стационарных орбит космической станции в окрестности астероида, соответствующих положениям относительного равновесия станции в плоскости, которая образована осями прецессии и собственного вращения астероида, в случае, когда астероид представляется близким к динамически симметричному твердым телом, сжатым вдоль оси динамической симметрии. Алгоритм основан на представлении гравитационного потенциала астероида композицией потенциалов двух комплексно-сопряженных точечных масс и состоит из последовательных замен переменных, сводящих задачу к аналитическому и численному решению алгебраических уравнений. Приведены некоторые факты об эволюции стационарных орбит при изменении угловой скорости прецессии.


Родников А. В. Моделирование поиска стационарных орбит космической станции в окрестности астероида сжатой формы. Математическое моделирование и численные методы, 2016, №3 (11), c. 110-118



551.513 Алгоритм увеличения вычислительной производительности и баланса загрузки процессоров для моделирования общей циркуляции атмосферы

Пархоменко В. П. (МГТУ им.Н.Э.Баумана/ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2016-3-93109


Представлен анализ некоторых факторов, влияющих на выполнение параллельной реализации модели общей циркуляции атмосферы на многопроцессорной электронно-вычислительной машине кластерного типа. Рассмотрены несколько модификаций первоначального параллельного кода этой модели, направленных на улучшение его вычислительной эффективности, баланса загрузки процессоров. Осуществлена модификация численной схемы по времени модели общей циркуляции атмосферы для возможности осуществления параллельных расчетов блоков динамики и физики. Предлагаемая процедура используется вместе с процедурами распараллеливания блоков динамики и физики на основе декомпозиции расчетной области, что позволяет оптимизировать загрузку процессоров и повысить эффективность распараллеливания. Результаты применения схемы баланса загрузки блока физики рассмотренной модели дают возможность усложнения блока физики без увеличения общего времени счета. Приведены результаты численных экспериментов.


Пархоменко В. П. Алгоритм увеличения вычислительной производительности и баланса загрузки процессоров для моделирования общей циркуляции атмосферы. Математическое моделирование и численные методы, 2016, №3 (11), c. 93-109



539.3+519.86 Модель многомерной деформируемой сплошной среды для прогнозирования динамики больших массивов индивидуальных данных

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Димитриенко О. Ю. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-1-105122


На основе разработанной авторами ранее модели многомерных сплошных сред в пространствах высокой размерности (более трех) предложена концепция применения этой модели для одной из главных задач, возникающих в теории обработки больших массивов данных — прогнозирования динамики изменения кластеров данных. Модель многомерных сплошных сред в пространствах высокой размерности включает в себя интегральные законы сохранения, которые сформулированы для кластеров информационных данных, а также модель кинематики движения и деформации кластеров. Разработана модель деформируемого многомерного кластера, движение которого в многомерном пространстве данных включает в себя поступательное, вращательное движение и однородную деформацию растяжения-сжатия. Сформулирована система дифференциальных тензорных уравнений, описывающих движение деформируемого многомерного кластера во времени. Разработан численный алгоритм решения этой системы дифференциальных уравнений для эллипсоидальной модели многомерного кластера. Рассмотрен пример применения разработанной модели для прогнозирования динамики экономических данных — данных о покупках товаров в крупном супермаркете. Приведены результаты прогнозирования данных о покупках различных групп покупателей.


Димитриенко Ю. И., Димитриенко О. Ю. Модель многомерной деформируемой сплошной среды для прогнозирования динамики больших массивов индивидуальных данных. Математическое моделирование и численные методы, 2016, №1 (9), c. 105-122



517.9:519.6 Анализ бифуркаций в двухмодовой аппроксимации системы Курамото — Цузуки

Малинецкий Г. Г. (Институт прикладной математики им. М.В. Келдыша РАН), Фаллер Д. С. (Институт прикладной математики им. М.В. Келдыша РАН)


doi: 10.18698/2309-3684-2014-3-111125


Рассмотрено появление хаотических аттракторов в системе трех обыкновенных дифференциальных уравнений, возникающих в теории моделей «реакция — диффузия». Исследованы динамика соответствующих одномерных и двумерных отображений и ляпуновские показатели возникающих аттракторов. Показано, что переход к хаосу происходит по нетрадиционному сценарию, связанному с многократным рождением и исчезновением хаотических режимов, который изучен для одномерных отображений с острой вершиной и квадратичным минимумом. С помощью численного анализа исследованы характерные особенности системы: наличие областей бистабильности и гиперболичности, кризис хаотических аттракторов.


Малинецкий Г. Г., Фаллер Д. С. Анализ бифуркаций в двухмодовой аппроксимации системы Курамото — Цузуки. Математическое моделирование и численные методы, 2014, №3 (3), c. 111-125



<< 2 >>