536.2(075) Applying the control−volume method to extended period simulations in pipe network hydraulics

Volkov V. Y. (JSC OKB GIROPRESS,), Golibrodo L. A. (JSC OKB GIROPRESS,), Zorina I. G. (Bauman Moscow State Technical University), Kudryavtsev O. V. (JSC OKB GIROPRESS,), Krutikov A. A. (JSC OKB GIROPRESS,), Skibin A. A. (JSC OKB GIROPRESS,)

CONTROL-VOLUME METHOD, GLOBAL GRADIENT ALGORITHM, EXTENDED PERIOD SIMULATIONS, TRANSIENT.


doi: 10.18698/2309-3684-2016-4-3446


For modeling piping systems we made a transition from the mass balance equations, based on 1m and 2m Kirchhoff laws, to the mathematical description of a hydraulic network using the continuity equation discretization. For this purpose we applied a controlvolume method. This paper introduces an extension of the developed control-volume method for extended period simulations in hydraulic networks. This extension is developed for slow time-varying conditions in the hydraulic networks and is not intended to calculate rapidly occurring local phenomena such as waterhammer. The control-volume method was successfully applied to test tasks.


[1] Sebisi T., Bredshou P. Konvektivnyy teploobmen. Fizicheskie osnovy i vychislitelnye metody [Convective heat transfer. Physical fundamentals and computational methods], Moscow, Mir Publ., 1987, 592 p.
[2] Fomin A.A., Fomina L.N. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2015, no. 4 (8), pp. 92–102.
[3] Merenkov A.P., Hasilev S.Yu. Teoriya gidravlicheskikh tsepey [Theory of hydraulic networks]. Moscow, Nauka Publ., 1985, 279 p.
[4] Cross H. Analysis of flow in networks of conduits or conductors. Engineering Experiment Station, University of Illinois, 1936, 38 p.
[5] Todini E., Pilati S. A gradient method for the analysis of pipe networks. International Conference on Computer Applications for Water Supply and Distribution, Leicester Polytechnic, UK, 1987, 20 p.
[6] ZhengY.W., Rong H.W., Walski T.M., Yang S.Y., .Bowdler D., Baggett C.C. Efficient pressure dependent demand model for large water distribution system analysis. 8th Annual Intern. Symp. on Water Distribution System Analysis, USA, Cincinnati, Ohio, 2006, pp. 1–15.
[7] Creaco E., Franchini M. Comparison on Newton-Raphson global and loop algorithms for water distribution network resolution. Journal of Hydraulic Engineering, 2013, pp. 313–320.
[8] Todini E. On the convergence properties of the different pipe network algorithms. 8th Annual Water Distribution Systems Analysis Symposium. USA, Cincinnati, Ohio, 2006, pp. 1–16.
[9] Todini E., Rossman L.A. Unified Framework for Deriving Simultaneous Equation Algorithms for Water Distribution Networks. Journal of Hydraulic Engineering, 2013, vol. 139, no. 5, pp. 511–526.
[10] Rossman L.A. EPANET 2, User’s Manual. Water Supply and Water Resources Division National Risk Management Research Laboratory Cincinnati, OH 45268, 2000, 200 p.
[11] Giustolisi O., Laucelli D., Berardi L., Savic D.A. Journal of Hydraulic Engineering, 2012, vol. 134, no. 4, pp. 313–326.
[12] Todini E. Journal of Hydroinformatics, 2011, vol. 13, no. 3, pp. 167–180.
[13] Patankar S.V. Numerical heat transfer and fluid flow. Taylor and Francis, 1981, 196 p.
[14] Belova O., Skibin A., Volkov V. Journal of Hydroinformatics, 2014, no. 70, pp. 123–131.
[15] Giustolisi O., Berardi L., Laucelli D. Journal of Hydroinformatics, 2012, no. 14, pp. 562–573.
[16] Wood D.J. Journal of Environmental Engineering, 2005, vol. 131, no. 8, pp. 1123–1131.


Volkov V., Golibrodo L., Zorina I., Kudryavtsev O., Krutikov A., Skibin A. Applying the control−volume method to extended period simulations in pipe network hydraulics. Маthematical Modeling and Coтputational Methods, 2016, №4 (12), pp. 34-46



Download article

Количество скачиваний: 635