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Для моделирования трубопроводных систем совершен переход от методов, осно-
ванных на уравнениях массового баланса, базирующихся на первом и втором зако-
нах Кирхгофа, к математическому описанию гидравлической сети с помощью дис-
кретизации уравнения неразрывности, для чего был применен метод контрольного 
объема. Представлено расширение разработанного метода контрольного объема 
для расчета нестационарных процессов потокораспределения в гидравлических 
сетях. Данное расширение метода разработано для медленно протекающих про-
цессов в гидравлических сетях и не подходит для расчета быстро протекающих 
местных процессов, таких как гидроудар. Метод успешно апробирован на примере 
решения нескольких тестовых задач. 
 
Ключевые слова: метод контрольного объема, нестационарные процессы, гло-
бальный градиентный алгоритм, метод расчета. 

 
Введение. В общем виде полная математическая модель движе-

ния жидкости состоит из системы уравнений, описывающей нестаци-
онарное турбулентное движение вязкой жидкости [1, 2]: 
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уравнение неразрывности 
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где  — плотность;   — проекция вектора скорости  на соот-

ветствующие оси;  — время;  — оси декартовой системы ко-

ординат  = 1, 2, 3);  — тензоры напряжений;  — статическое 

давление;  — источник объемных сил. 
Однако для промышленности для расчета гидравлических трубо-

проводных систем требуется быстро получить интегральные резуль-
таты (расходов и гидравлических напоров), поэтому математическая 
модель сводится к решению двух законов Кирхгофа: сохранения мас-
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сового баланса и потерь давления между потребителями. Таким об-
разом, задача по определению интегральных характеристик для по-
терь давления (напора) между узлами i и j и описывается выражени-
ями [2, 3]: 

2;   n
i j ij ij ijH H h rQ mQ  

0,  ij i
i

Q D  

где  — напор в узле, м;  — потери напора, м;  j — индексы уз-
лов гидравлической связи;  — коэффициент сопротивления;  — 
объемный расход, м3/с;  — показатель степени, зависящий от ре-
жима течения;  — коэффициент местного сопротивления;  — 

расход в i-м узле (если величина положительная, то он определяет 
сток массы), м3/с. 

Стационарные задачи потокораспределения сетевой гидравлики 
достаточно хорошо изучены. Так, первые достижения по решению 
контурных задач трубопроводных систем относятся еще к трудам 
Харди Кросса [4]. Наиболее универсальным методом решения задачи 
потокораспределения является глобальный градиентный алгоритм 
(Global Gradient Algorithm, GGA), предложенный Тодини и Пилати 
в 1987 г. [5]. Данный метод наиболее прост и эффективен с точки зре-
ния реализации и вычислительной производительности [6–9]. На этом 
алгоритме основано наиболее известное отраслевое программное 
обеспечение (ПО) для гидравлических расчетов EPANET [10]. В 2009 г. 
GGA был расширен Густолизи возможностью эквивалентирования, что 
позволило сократить временные затраты на расчет [11]. Однако все 
упомянутые алгоритмы априори являются стационарными. 

Во многих случаях для анализа изменения работы системы во 
время ее эксплуатации требуется решение нестационарных задач, 
связанных с наполнением и опорожнением гидравлических емкостей. 
Однако, как было показано в 2011 г. в статье [12], при решении с по-
мощью стандартных программ и методов можно получить осцилля-
ции давления и расходов даже для очень упрощенной сети, состоя-
щей из трех узлов и трех связей (рис. 1). Пример такого расчета 
с помощью стандартного гидравлического ПО EPANET для шага по 
времени 5 мин представлен на рис. 2, на котором точками показаны 
значения в узлах и связях, линиями — численное решение. 

В статье [12] предложен метод решения данных проблем, осно-
ванный на GGA и методе Эйлера. Правда в таком варианте метода 
расчета нестационарного потокораспределения возможны неустой-
чивости, связанные с методом решения. Для того чтобы исключить 
их появление, используется весовой коэффициент по времени [12]. 
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Рис. 1. Простая гидравлическая сеть 
 

 

Рис. 2. Результаты расчета напора H и массового раcхода Q с помощью 
ПО EPANET ( , , ) и точное решение (Exact, , , ) 

 
В настоящей статье представлено расширение разработанного 

ранее метода контрольного объема (МКО) для расчета стационарных 
процессов потокораспределения в гидравлических сетях [13]. Данное 
расширение МКО разработано для медленно протекающих нестаци-
онарных процессов в гидравлических сетях аналогично методам, из-
ложенным в статьях [12–15], и не предназначено для расчета быстро 
протекающих местных процессов, таких как гидроудар [16]. 

Метод контрольного объема для расчета стационарных про-
цессов. Для расчета гидравлической сети применен метод контроль-
ного объема. Построение гидравлической сети осуществляется таким 
образом, чтобы центру каждого контрольного объема (КО) соответ-
ствовал узел гидравлической сети, а грани контрольных объемов — 
серединам гидравлических связей (трубопроводов), как представлено 
на рис. 3. 

При построении дискретного аналога проводится линеаризация 
уравнения сохранения движения [13]. При записи дискретного анало-
га совершается переход от конвективных потоков F к среднеинте-
гральной скорости в связи. 



Применение метода контрольного объема для моделирования… 

37 

 

Рис. 3. Контрольные объемы для уравнения движения (а) и 
уравнения неразрывности (б) 

 
Таким образом, дискретные аналоги уравнения движения можно 

представить  
2
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где  — коэффициент дискретного аналога уравнения движения, 

вычисляемый по формуле 
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Здесь X  — длина гидравлической связи, м;   — плотность дви-

жущейся среды, кг/м3; wu  — скорость в гидравлической связи, м/с; 

  — коэффициент гидравлического сопротивления; P  — давление, Па; 
     , , ,P W E S  — индексы, относящиеся к центру КО; ,   ,w e s  — индек-

сы, относящиеся к грани КО. 
Дискретный аналог уравнения неразрывности запишем в виде  

,   P P W W E E S Sa P a P a P a P b                           (3) 

где коэффициенты дискретного аналога уравнения неразрывности 
определяются по формулам 
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Здесь S  — площадь поперечного сечения гидравлической связи, 
м2; b  — источниковый член, кг/с. 

Метод контрольного объема для расчета нестационарных 
процессов. Для расчета переходных процессов наполнения и опо-
рожнения гидравлических емкостей была применена неявная схема. 
При этом расчет происходит как набор последовательных решений 

wd
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стационарных процессов с изменяющимися во времени источнико-
выми членами в узлах. Таким образом, расход в узле с изменяемым 
давлением записывается в линейную часть источникового члена b  
уравнения (3). 

Шаг по времени задается искусственно и определяется как 
*,  t t t  где ,t  *t  — индексы, относящиеся к текущему и преды-

дущему моментам времени. 
В качестве гидравлических емкостей рассмотрим баки постоян-

ного сечения. В этом случае объем жидкости в баке .V SH  Тогда 
изменение объемного расхода q  в узлах за интервал t  описывается 

как *( ( ) ( )).  tq S H t H t  
Таким образом, изменение объемного расхода 
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Переходя к массовым расходам ,Q  имеем . Q q  
Перепишем выражение, заменив напор H  на давление :P  
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Следовательно, источниковый член дискретного аналога уравне-
ния неразрывности имеет вид 

* 
 
S S

Q P P
g t g t

 

или при стандартной записи дискретного аналога 

*. P PQ a P a P  

Для решения системы уравнений (1)–(4) применена следующая 
модифицированная итерационная процедура:  

1) вводятся предполагаемые поля скорости и давления, задается 
шаг по времени; 

2) рассчитываются значения d для всех гидравлических связей 
по формулам (2); 

3) определяются коэффициенты дискретного аналога поля дав-
ления (4) и поля давления и градиентов давления, а также массовые 
потоки через грани КО; 

4) рассчитываются значения скорости для каждой гидравличе-
ской связи с использованием коэффициентов дискретного аналога 
уравнения движения и полученного градиента поля давления; 
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5) возврат к п. 2 до тех пор, пока не будет достигнута сходи-
мость, ее критерием является достижение невязки узловых массовых 
балансов, значения которого меньше заданного; 

6) переход на следующий шаг по времени, пока не закончится 
расчет. 

Для разработанного метода контрольного объема не требуется 
выделение гидравлических контуров, он сводится к решению едино-
го поля давления сразу для всей расчетной области. При этом, как 
было показано в работе [13], этот метод позволяет решать задачи по-
токораспределения размерностью более 10 млн узлов и связей. Раз-
работанный метод стабильнее, чем EPANET при решении задач 
большой размерности (более 2000 узлов) [13]. 

Тестирование метода КО было проведено на ряде задач с раз-
личными шагами по времени. В качестве наиболее характерных рас-
смотрены задачи расчета гидравлических сетей из статей [12, 15]. 

Простая система. Система представляет собой два соединенных 
между собой бака постоянного сечения, наполненных водой (см. рис. 1). 
Начальный уровень воды (напор) в баках 1 и 2 равен 20 и 30 метров со-
ответственно. Баки посредством двух трубопроводов (трубы 2 и 3 на 
рис. 2) соединены с резервуаром 3, в котором поддерживается посто-
янное нулевое давление. Диаметр баков равен 3,56 м. Перепад давле-
ния на участках трубопроводов рассчитывается с помощью уравне-
ния Хазена — Вильямса [6]. Для всех трубопроводов коэффициент 
шероховатости Хазена — Вильямса принимается равным 130. Длина 
всех трубопроводов составляет 100 м, диаметр трубы 1 равен 200 мм, 
а труб 2 и 3 — 100 мм. В начальный момент времени расход по тру-
бопроводам отсутствует. В нулевой момент времени вода из баков 
начинает перетекать по трубопроводам до тех пор, пока баки полно-
стью не опустеют. 

На рис. 4 представлены результаты расчета данной системы на 
различных шагах по времени (5, 15, 60 и 120 мин соответственно). 
Сравнение результатов, полученных с помощью метода контрольного 
объема, проводилось с данными статьи [15], где для расчета подобных 
систем применен обобщенный глобальный градиентный алгоритм 
(Generalized Global Gradient Algorithm, G-GGA). 

Полученные результаты согласуются с результатами статьи [15]. 
Погрешность не превышает 0,35 % относительно G-GGA. При этом 
максимальные абсолютные отклонения расходов не превышают 
0,5 кг/с, а напоров — 0,1 м. 

Погрешность расчета определялась по формуле:  

2
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где F — значение переменной в i-й момент времени; индексы 
МКО, G-GGA — значения, полученные с помощью МКО и данных 
статьи [15]. 

 

Рис. 4. Результаты расчета с использованием различных шагов по времени: 

, ,  — МКО; , ,  — G-GGA (в скобках указаны номера узлов/связей): 
а — Δt = 5 мин; б — Δt = 15 мин; в — Δt = 60 мин; г — Δt = 120 мин 
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Полученные результаты расчета также согласуются с данными, 
представленными в статье [12]. При этом в гидравлической сети не 
возникает осциляций давления для всех шагов по времени, в отличие 
от решения с помощью EPANET. 

Расчет сложной системы. Для проверки численной устойчиво-
сти МКО была рассмотрена гидравлическая сеть Апулии, представ-
ленная на рис. 5. Постановка задачи аналогична данным статьи [15]. 
Перепад давления на участках трубопроводов рассчитывается с по-
мощью уравнения Дарси — Вейсбаха. Каждый из 23 узлов гидравли-
ческой сети представляется в виде бака с постоянной площадью по-
перечного сечения 10 м2. Для всех расчетов шаг по времени был 
равен 10 мин. 

 

Рис. 5. Гидравлическая сеть Апулии 
 
Были рассмотрены три вычислительных эксперимента переход-

ных процессов в гидравлической сети: 
 во всех баках в нулевой момент времени задан постоянный ну-

левой напор (все баки пусты и наполняются во время переходного 
режима); 

 во всех баках в нулевой момент времени задан постоянный 
напор 72,8 м (все баки наполнены одинаково, и во время переходного 
режима происходит их опустошение); 

 в начальный момент в баках 1–6, 16–19, 21 и 23 задан нулевой 
напор, в других — постоянный напор 72,8 м. 
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Для всех рассматриваемых случаев в узле 24 (резервуар) поддер-
живается постоянный напор, равный 36,4 м. 

Таким образом, рассмотрены задачи наполнения и опустошения 
баков. Результаты расчета (изменение массовых расходов и узловых 
давлений) представлены на рис. 6. Полученные с помощью метода 
контрольного объема результаты согласуются с данными статьи [15]. 
При этом в гидравлической сети не возникает осциляций давления. 
Можно заключить, что разработанный метод устойчив при решении 
переходных процессов для задач наполнения и опорожнения гидрав-
лических емкостей независимо от размерности задачи. 

 

Рис. 6. Результаты гидравлического расчета сети Апулии: 
а — эксперимент 1; б — эксперимент 2; в — эксперимент 3 

 
Заключение. Представленное расширение разработанного метода 

контрольного объема для расчета нестационарных процессов потоко-
распределения в гидравлических сетях разработано для медленно про-
текающих процессов в гидравлических сетях и не предназначено 
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для расчета быстро протекающих местных явлений, таких как гидро-
удар [12]. 

Было проведено тестирование предложенного метода для реше-
ния нестационарных задач потокораспределения на ряде примеров, 
анализ сравнения результатов которых с ПО EPANET показал, что 
разработанный метод более стабилен при решении нестационарных 
задач [12]. При этом для модификации математической модели раз-
работанного варианта метода контрольного объема и ее программной 
реализации не требуется больших затрат. 
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Applying the control−volume method to extended period 
simulations in pipe network hydraulics 

© V.Yu. Volkov1, L.A. Golibrodo1, I.G. Zorina2, O.V. Kudryavtsev1, 
A.A. Krutikov1, A.P. Skibin1 

1JSC OKB GIROPRESS, Podolsk, 142103, Russia 
2Bauman Moscow State Technical University, Moscow, 105005, Russia 

 
For modeling piping systems we made a transition from the mass balance equations, 
based on 1m and 2m Kirchhoff laws, to the mathematical description of a hydraulic net-
work using the continuity equation discretization. For this purpose we applied a control-
volume method. This paper introduces an extension of the developed control-volume 
method for extended period simulations in hydraulic networks. This extension is devel-



Применение метода контрольного объема для моделирования… 

45 

oped for slow time-varying conditions in the hydraulic networks and is not intended to 
calculate rapidly occurring local phenomena such as waterhammer. The control-volume 
method was successfully applied to test tasks. 
 
Keywords: control-volume method, global gradient algorithm, extended period simula-
tions, transient. 
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