doi: 10.18698/2309-3684-2019-3-3956
The paper considers improving techniques of numerical simulation of high-speed interaction of solids, performed for designing spacecraft protection from the impact of micrometeorites and debris particles. An algorithm for the implementation of boundary conditions on the contact surface, designed for numerical simulation using Lagrangian grids and based on the control of mutual penetration of tetrahedral cells of contacting bodies at the intersection of their edges, is proposed. The algorithm is based on the calculation of reaction forces for nodes of tetrahedral cell edges of contacting bodies and correction of velocity vectors of these nodes under condition of non-penetration
Gerasimov A.V., Pashkov S.V., Khristenko Yu.F. Vestnik Tomskogo gosudarstvennogo universiteta. Seriya Matematikas i Meckhanika — Tomsk State University Journal of Mathematics and Mechanics, 2011, no.4 (16), pp.70–78.
Bashurov V.V., Bebenin G.V., Belov G.V., Bukharev Y.N., Zhukov V.I., Ioilev A.G., Lapichev N.V., Mikhailov A.L., Smirnov A.L., Fateev G.S., Schlyapnikov G.P. International Journal of Impact Engineering, 1997, vol.20 (1–5), pp.69–78.
Myagkov N.N., Shumikhin T.A., Bezrukov L. N. International Journal of Impact Engineering, 2010, vol.37, pp.980–994.
Plassard F., Mespoulet J., Hereil P. Hypervelocity impact of aluminium sphere against aluminium plate: experiment and LS-DYNA correlation, Proceedings of the 8th European LS-DYNA users conference, France, Strasbourg, pp.23–24.
Shumikhin T. A., Myagkov N. N., Bezrukov L. N. International Journal of Impact Engineering, 2012, vol.50, pp.90−98.
Gerasimov A. V., Pashkov S. V., Khristenko Y. F., Dobritsa D. B. Kosmicheskie issledovaniya — Cosmic Research, 2016, vol.54, no.2, pp.126–134.
Johnson, K.L. Contact Mechanics. Cambridge, Cambridge University Press Publ., 1985, 460 p. [In Russ: Johnson K.L. Mechanics of contact interaction. Moscow, Mir Publ., 1989, 510 p.].
Burago N.G., Kukudzhanov V.N. Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela –Mechanics of Solids, 2005, no.1, pp.44–85.
Gulidov A.I., Shabalin I.I. Chislennaya realizatsiya granichnykh usloviy v dinamicheskikh kontaktnykh zadachakh. Novosibirsk, Preprint Instituta Teoreticheskoy i Prikladnoy mekhaniki SO AN SSSR Publ., 1987, no.12, 37 p. (Preprint of the Institute of Theoretical and Applied Mechanics SB RAS)
Gulidov A. I., Shabalin I. I. Raschet kontaktnykh granits s uchetom treniya pri dinamicheskom vzaimodeystvii deformiruemykh tel [Calculation of contact boundaries taking into account friction at dynamic interaction of deformable bodies]. Chislennye metody resheniya zadach teorii uprugosti i plastichnosti: Materialy IX Vsesoyuznoy konferentsii [Proceedings of the IX all-Union conference “Numerical methods for solving problems of elasticity and plasticity theory”]. Novosibirsk, 1988, pp.7075.
Wilkins M.L. Computer simulation of dynamic phenomena. Berlin-Heidelberg-New-York, Springer, 1999, 246 p.
Dimitrienko Yu. I. Mekhanika sploshnoy sredy. Tom 4. Osnovy mekhaniki tverdogo tela [Continuum Mechanics. Vol.4. Fundamentals of solid mechanics]. Moscow, BMSTU Publ., 2013, 624 p.
Dimitrienko Yu.I., Dimitrienko I.D. Inzhenernyy zhurnal: Nauka i innovatsii — Engineering Journal: Science and Innovation, 2014, no.5.
DOI: 10.18698/2308-6033-2014-5-1236 Available at:
http://engjournal.ru/catalog/mathmodel/material/1236.html (accessed April 17, 2019).
Dobritsa B.T., Dobritsa D.B., Pashkov S.V. Matematicheskoe modelirovanie i chislennye menody – Mathematical Modeling and Computational Methods, 2018, no.2, pp.70-89.
Fomin V.M., Gulidov A.I., Sapozhnikov G. A., Shabalin I.I., Babakov V.A, Kuropatenko V.F., Kiselev A.B., Trishin Yu A., Sadyrin A.I., Kiselev S.P., Golovnev I.F. Vysokoskorostnoe vzaimodeystvie tel. [High-speed interaction of bodies]. Novosibirsk, SO RAN Publ., 1999, 600 p.
Добрица Б.Т., Добрица Д.Б., Ященко Б.Ю. Моделирование контактного взаимодействия ребер тетраэдрических ячеек при решении задач высокоскоростного взаимодействия пространственных тел. Математическое моделирование и численные методы. 2019. № 3.c.39–56.
Количество скачиваний: 516