533.16 Modeling the chemical composition of a gas in a nonequilibrium air boundary layer on a wall with a finite catalytic activity

Gorskiy V. V. (Bauman Moscow State Technical University/JSC MIC NPO Mashinostroyenia), Adamenko R. A. (JSC MIC NPO Mashinostroyenia)

SILICON CARBIDE, ABLATION, CARBON, OXIDATION, KINETIC CONSTANTS


doi: 10.18698/2309-3684-2018-4-93106


The study of aerothermal destruction of silicon carbide is constantly given increased at-tention. This is primarily due to its widespread use as a protection against oxidation of carbon materials. The rate of aerothermochemical destruction of materials largely de-pends on the specific heat flux and on the degree of recombination of oxygen atoms on the wall. In this paper, we consider a method for solving the complex problem of high-temperature non-equilibrium air stream flowing of a material coated with a silicon car-bide film under conditions of finite catalyticity of the surface of this film.


[1] Kovalev V.G. Geterogennye kataliticheskie processy v aehrotermodinamike [Heterogeneous catalytic processes in aerothermodynamics]. Moscow, Fizmatlit Publ., 2002, 224 p.
[2] Zemlyanskiy B.A., ed. Konvektivnyy teploobmen letatelnykh apparatov [Con-vective heat transfer of aircraft]. Moscow, Fizmatlit Publ., 2014, 380 p.
[3] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A., Stroganov A.S. Ma-tematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2014, no. 3, pp. 3–24.
[4] Timofeev V.N. Matematicheskoe modelirovanie i chislennye metody — Mathe-matical Modeling and Computational Methods, 2017, no. 4, pp. 79–91.
[5] Gorskii V.V., Kovalskiy M.N. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2017, no. 2,
pp. 65–80.
[6] Gorskii V.V., Kovalskiy M.N. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2018, no. 2,
pp. 96–108.
[7] Baiocco P., Guedron S., Plotard P., Moulin J. The pre-X atmospheric re-entry experimental lifting body: Program status and system synthesis. AIAA 57th
International Astronautical Congress, IAC, 2006, pp. 8234–8245.
[8] García A., Chazot O., Fletcher D. Investigations in Plasmatron Facilities on Catalicity Determination. European Space Agency, ESA SP-487, 2002, p. 489.
[9] Vanden Abeele D., Degrez G. Efficient computational model for inductive plasma flows. AIAA Journal, vol. 38, no. 2, pp. 234–242.
[10] Barbato M., Reggiani S., Bruno C., Muylaert J. Model for Heterogeneous Cata-
lysis on Metal Surfaces with Applications to Hypersonic Flows. Journal of Thermophysics and Heat Transfer, 2002, no. 14, pp. 412–420.
[11] Gorskii V.V. Teoreticheskie osnovy rascheta ablyatsionnoy teplovoy zashchity [Theoretical bases of calculation of ablative thermal protection]. Moscow, Nauchnyy mir Publ., 2015, 688 p.
[12] Chapmen S., Cowling T.G. The Mathematical Theory of Non-uniform Gases: An Account Of The Kinetic Theory Of Viscosity, Thermal Conduction And Diffusion In Gases. Ser. Cambridge Mathematical Library. Cambridge University Press, 3 ed., 1991, 446 p. [In Russ.: Chapmen S., Cowling T. G. Matematicheskaya
teoriya neodnorodnykh gazov. Moscow, Izd. in. lit. Publ., 1960, 510 p.].
[13] Hirschfelder J., Curtiss Ch., Bird R. The Molecular Theory of Gases and Liquids. Wiley-Interscience, rev. ed., 1280 p. [In Russ.: Hirschfelder J., Curtiss Ch., Bird R. Molekulyarnaya teoriya gazov i zhidkostey. Moscow, Izd. in. lit. Publ., 1961, 929 p.].
[14] Skala S.M., Gilbert L.M. Raketnaya tekhnika i kosmonavtika (Rocket technology and cosmonautics), 1965, vol. 3, no. 9, pp. 87–100.
[15] Anfimov N.A. Izvestiya Akademii nauk SSSR. Otdelenie tekhnicheskikh nauk. Mekhanika i mashinostroenie (Bulletin of the Academy of Sciences of the USSR. Division of Engineering Sciences. Mechanics and Mechanical Engineering), 1964, no. 5, pp. 3–11.
[16] Sokolova I.A. Koeffitsienty perenosa i integraly stolknoveniy vozdukha i ego component [Transfer coefficients and collision integrals of air and its compo-nents]. In: Fizicheskaya kinetika. Aerofizicheckie issledovaniya [Physical kine-
tics. Aerophysical research]. Novosibirsk, Proceedings of the Institute of Theo-retical and Applied Mechanics SO AS USSR, no. 4, 1974, pp. 39–104.
[17] Capitelli M., Colonna G., Gorse C., D’Angola A. Transport properties of high temperature air in local thermodynamic equilibrium. The European Physical Journal, 2000, no. 11, pp. 279–289.
[18] Gorskii V.V., Fedorov S.N. Inzhenerno-fizicheskiy zhurnal — Journal of Engi-neering Physics and Thermophysics, 2007, vol. 80, no. 5. pp. 97–101.
[19] Anfimov N.A. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 1964, no. 1, pp. 47–52
[20] [20] Gorskii V.V., Olenicheva A.A. Validity of the binary diffusion law in cal-culating heat and mass transfer in gas mixtures with complex chemical composition. High Temperature, 2011, vol. 49, no. 1, pp. 68–71.
[21] Krivonosova O.E., Losev S.A., Nalivayko V.P., Shatalov O.P. Rekomenduemye dannye po kinetike khimicheskikh reaktsiy v sisteme atomov O-N [Recom-mended data on the kinetics of chemical reactions in the O-N atom system].
In: Fiziko-khimicheskaya kinetika v gazovoy dinamike [Physico-chemical kine-
tics in gas dynamics]. Moscow, MSU Publ., 1986, pp. 5–26.
[22] Park C. Two-Temperature Interpretation of dissociation Rate Data for N2 and O2. AIAA Papper 88-458, 1988.
[23] Yakushin M., Gordeev A., Venneman D., Novelli A. Mass loss of Sic Sample surfaces under different flow conditions. AIAA Paper 98-2605, 1998.
[24] Gorskii V.V., Gordeev A.N., Dudkina T.I. Aerothermochemical destruction of silicon carbide washed by a high-temperature flow of air. High Temperature, 2012, vol. 50, iss. 5, pp. 646–652.
[25] Gorskii V.V., Gordeev A.N., Vasilevskiy S.A., Dudkina T.I., Sysenko V.A. In-zhenernyy zhurnal: nauka i innovacii – Engineering Journal: Science and Innovation, 2016, no. 11. Available at: http://dx.doi.org/10.18698/2308-6033-2016-11-1550


Горский В.В., Адаменко Р.А. Моделирование химического состава газа в неравновесном воздушном пограничном слое на стенке, обладающей конечной ка-талитической активностью. Математическое моделирование и численные методы, 2018, № 4, с. 93–106.



Download article

Количество скачиваний: 62