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Исследованию аэротермической деструкции карбида кремния постоянно уделяет-

ся повышенное внимание. В первую очередь это обусловлено его широким исполь-

зованием в качестве защиты от окисления углеродных материалов. Скорость 

аэротермохимической деструкции материалов в значительной степени зависит 

от удельного теплового потока и от степени рекомбинации атомов кислорода на 

стенке. В данной работе рассмотрена методика решения комплексной задачи об-

текания высокотемпературным неравновесным потоком воздуха материала, по-

крытого пленкой карбида кремния, в условиях конечной каталитичности поверх-

ности этой пленки.  
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Введение. Влияние гетерогенных химических реакций, протека-

ющих с конечными скоростями на поверхности летательного аппара-

та, обтекаемой диссоциированным потоком воздуха, подробно осве-

щено в литературе (например, [1, 2]). Внимание к указанной проблеме 

в первую очередь было обусловлено проектированием многоразовых 

летательных аппаратов, для которых требовалась информация только 

о суммарном снижении удельного теплового потока за счет неполной 

рекомбинации атомов кислорода и азота на стенке.  

Однако для изучения процесса аэротермохимической деструкции 

карбида кремния столь же важным является вопрос о том, за счет ка-

кой гетерогенной химической реакции на стенке происходит сниже-

ние теплового потока, который к ней подводится. Это связано с тем 

обстоятельством, что от степени рекомбинации атомов кислорода  

в определенной степени зависит скорость деструкции этого вещества. 

Массовая скорость газификации карбида кремния, обусловленная 

протеканием в нем совокупности физико-химических процессов, крайне 

невелика по сравнению с коэффициентом теплообмена в пограничном 

слое. Это позволяет выделить из комплексной проблемы нагрева и де-

струкции карбида кремния задачи, связанные с решением уравнений 

пограничного слоя, в предположении, что стенка непроницаема. 
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Решение данной задачи должно базироваться на расчетно-теоре- 

тическом исследовании результатов систематических экспериметов, 

выполненных в струях аэродинамических установок. Проведению 

указанного исследования должен предшествовать анализ уравнений, 

описывающих скорость протекания гетерогенных химических реак-

ций на стенке. 

Методика решения автомодельных уравнений неравновесно-

го ламинарного пограничного слоя на стенке с конечной катали-

тической активностью. Рассматриваемая частная задача относится  

к области знаний, относящейся к изучению взаимодействия газовых 

потоков с обтекаемыми ими телами. Изучению этой проблемы по-

священа обширная библиография, из которой сошлемся только на 

ряд статей [3–6], опубликованных в последнее время на страницах 

данного журнала, а также на ряд зарубежных публикаций [7–10].  

Рамки данной методики ограничены рассмотрением осесимметрич-

ного воздушного шестикомпонентного пограничного слоя в окрест- 

ности критической точки тела, химический состав газовой смеси в ко-

тором представлен следующими веществами: 

2 2O, O , N, N , NO, Ar                                   (1) 

Система дифференциальных уравнений, описывающая течение 

газа в пограничном слое на непроницаемой стенке, в рассматривае-

мом случае имеет вид [11]: 

( ) 2 eRu 0;f ff fηη ηη

 ρ + − Ω − = ηη ρ 
                        (2) 
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Здесь f  — безразмерная функция тока; ,, , , , , Pr, Rup frh u cρ µ  — 

соответственно энтальпия, тангенциальная проекция вектора скорости, 

плотность, коэффициент динамической вязкости, изобарная удельная 

теплоемкость, число Прандтля и параметр Рубезина в газовой смеси; 
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,ξ η  — переменные Лиза — Дородницына; Φ  — размерная функция 

тока, тождественно удовлетворяющая уравнению неразрывности; 

, ,i i iC J ω  — соответственно массовая концентрация, проекция вектора 

диффузионного потока массы на внешнюю нормаль к стенке и скорость 

образования в единице объема i-го вещества из списка (1); индексы 

e, 0, , sη  относятся к внешней границе пограничного слоя, к крити-

ческой точке тела и к производным по соответствующим коорди- 

натам. 

Для уравнений (2) и (3) форма записи граничных условий имеет 

стандартный вид: 

(0) (0) 0;f fη= =  ( )e 1;fη η =  
6

1

(0) ;i i

i

h C h
=

=∑  00 ,h h=          (5) 

где hi — энтальпия i-го вещества; h00 — энтальпия торможения набе-

гающего газового потока. 

Для уравнения (4) стандартная форма записи граничных условий 

сохраняется только на внешней границе пограничного слоя, где 

( )e ,e,0 ,i iC Cη =  1,6.i =                                    (6) 

В литературных источниках на стенке для уравнения (4) исполь-

зуются граничные условия вида [1, 2]: 

,O ,O O(0) ;d wJ K C− = ρ  
2O O NO O NO O/ ;C C C M M+ + = Θ  

,N ,N N(0) ;d wJ K C− = ρ  
2N N NO N NO N/ ;C C C M M+ + = Θ          (7) 

NO NO,(0) ,wC C=  

здесь Mi — молекулярная масса i-го вещества; ,O ,N,w wK K  — кон-

станты скоростей химических реакций, приводящих к убыли на стенке 

атомарного кислорода и атомарного азота; NO,wC  — заданное фикси-

рованное значение массовой концентрации оксида азота на стенке;  

использование этого значения упрощает поиск решения задачи, не 

сказываясь существенно на полученных результатах ввиду малого со-

держания этого вещества в пограничном слое. 

Константы протекания реакций рекомбинации определяются на 

базе обеспечения удовлетворительного соответствия между расчет-

ными и экспериментальными данными по удельному тепловому по-

току, подводимому к стенке. В этой связи необходимо отметить, что 

результаты проведенных исследований будут жестко привязаны  

к данной форме записи граничных условий (7). 
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Возможность получения качественной информации о процессах 

тепломассопереноса и трения, протекающих в газовом ламинарном 

пограничном слое, путем решения тех или иных гидродинамических 

уравнений основана на применении методов теории статистической 

физики для расчета переносных свойств многокомпонентных газо-

вых смесей. 

Так как переносные свойства многокомпонентной газовой смеси 

зависят от ее химического состава и переносных свойств индивиду-

альных веществ, входящих в состав смеси, решение рассматриваемой 

проблемы должно базироваться на использовании: 

• методики определения переносных свойств газовой смеси за-

данного химического состава; 

• методики определения переносных свойств индивидуальных 

веществ этой газовой смеси. 

К числу наиболее качественных подходов к решению первой из 

указанных задач относятся методы, основанные на применении тео-

рии Чепмена — Энскога [12]. При этом для исследования свойств га-

зовых смесей сложного химического состава обычно используется 

второе приближение данной теории [13–15]. Систему соответствую-

щих расчетных соотношений называют методом Гиршфельдера. В то 

же время для газовых смесей (в первую очередь, для воздуха), наибо-

лее часто используемых на практике и характеризующихся фиксиро-

ванным элементарным химическим составом, известны решения рас-

сматриваемой задачи, полученные в четвертом приближении теории 

Чепмена — Энскога [16, 17]. 

В настоящей работе применяется предложенный ранее [18] подход 

к расчету переносных свойств многокомпонентных неионизированных 

газовых смесей, образованных из кислорода, азота и углерода. Подход 

основан на модификации метода Гиршфельдера и базируется на сопо-

ставлении данных по коэффициенту динамической вязкости воз- 

духа, полученных во втором и в четвертом приближениях теории 

Чепмена — Энскога. 

Для расчета диффузионного массопереноса в пограничном слое 

могут использоваться разные подходы.  

Известно, что применение закона бинарной диффузии оказывает-

ся весьма эффективным при рассмотрении газовых смесей простого 

химического состава: 

• компоненты могут быть разбиты на две группы, внутри кото-

рых различие в молекулярных массах и в параметрах межмолекуляр-

ного взаимодействия относительно невелико; 

• на границах рассматриваемой области, в которой исследуются 

процессы диффузионного тепломассопереноса, расположено наиболь-

шее число частиц, принадлежащих разным группам из числа указанных. 
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Для газовых смесей, к числу которых относится диссоциирован-

ный воздух, закон бинарной диффузии, называемый законом Фика 

[13], оперирующий единственным коэффициентом бинарной диффу-

зии 1,2D  веществ первой группы в вещества второй группы, обладает 

достаточно высокой точностью [19, 20]. 

Для газовых же смесей более сложного химического состава ис-

пользование закона Фика зачастую приводит к недопустимо большим 

ошибкам в определении интенсивности процессов тепломассоперено-

са, если в исследуемых процессах использовать единый подход к раз-

биению компонент смеси на группы [20, 21]. 

Поскольку в данной работе объектом исследования является дис-

социированный воздух, расчет диффузионного массопереноса в по-

граничном слое проводится в приближении бинарной диффузии,  

в рамках которого диффузионный поток массы i-го вещества записы-

вается в виде 

, ,

Le
,

Pr
d i i

R
J C η= −

Ψ
                                    (8) 

где 1,2 ,Le = /p frD cρ λ  — число Льюиса 1,2(D  — коэффициент бинар-

ной диффузии). 

Для расчета скоростей образования веществ в пограничном слое 

вследствие прохождения гомогенных химических реакций с конеч-

ными скоростями используют стандартный алгоритм [2]: 

( ) ( ) ( ), ,
517

3
, , , ,

1 1

10 ,
j k j k

i i i k i k f k j r k j

k j

M k z k z
′ ′′ν ν

= =

 
′′ ′ω = ν − ν ρ − ρ 

  
∑ ∏ ∏         (9) 

здесь ,f kk  и ,r kk  — константы скоростей прямой и обратной химичес- 

ких реакций с номером ,k  имеющих следующий обобщенный вид: 

1, 2, 2 3, 4, 2 5,O+ O + N+ N + NOk k k k k
′ ′ ′ ′ ′ν ν ν ν ν ↔  

1, 2, 2 3, 4, 2 5,O+ O + N+ N + NO,k k k k k
′′ ′′ ′′ ′′ ′′↔ ν ν ν ν ν  

где ,j k
′ν  и ,j k

′′ν  — стехиометрические коэффициенты; / .j j jz C M=  

Перечень учитываемых химических реакций, общее число кото-

рых равно 17, и соответствующих им стехиометрических коэффици-

ентов приведен в табл. 1. 

Константы скоростей реакций рассматриваются в однотемпера-

турной постановке, в рамках которой не учитывается отличие коле-

бательной температуры vT  от ее поступательного аналога .T  При 
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этом константы прямых и обратных реакций записывают в аррениу-

совском виде следующим образом: 

( ) ( ),
, , ,exp / ,f kn

f k f k f kk T A T T T= −  

( ) ( ),
, , ,exp / .r kn

r k r k r kk T A T T T= −                           (10) 

Значения констант для всех учитываемых реакций, входящих  

в уравнения (10), которые рекомендованы к использованию в работе [2] 

на основе экспериментальных данных [22, 23], приведены в табл. 2. 

Таблица 1 

Перечень учитываемых химических реакций  

и стехиометрических коэффициентов 

k Реакция 1,k
′ν  2,k

′ν  3,k
′ν  4,k

′ν  5,k
′ν  1,k

′′ν  2,k
′′ν  3,k

′′ν  4,k
′′ν  5,k

′′ν  

1 2N + O 2N + O↔  1 0 0 1 1 1 0 2 0 0 

2 2 2 2N + O 2N + O↔  0 1 0 1 0 0 1 2 0 0 

3 2N + N 2N + N↔  0 0 1 1 0 0 0 3 0 0 

4 22 2N + N 2N + N↔  0 0 0 2 0 0 0 2 1 0 

5 2N + NO 2N + NO↔  0 0 0 1 1 0 0 2 0 1 

6 2O + O 2O + O↔  1 1 0 0 0 3 0 0 0 0 

7 2 2 2O + O 2O + O↔  0 2 0 0 0 2 1 0 0 0 

8 2O + N 2O + N↔  0 1 1 0 0 2 0 1 0 0 

9 2 2 2O + N 2O + N↔  0 1 0 1 0 2 0 0 1 0 

10 2O + NO 2O + NO↔  0 1 0 0 1 2 0 0 0 1 

11 NO + O N + O + O↔  1 0 0 0 1 2 0 1 0 0 

12 2 2NO + O N + O + O↔  0 1 0 0 1 1 1 1 0 0 

13 NO + N N + O + N↔  0 0 1 0 1 1 0 2 1 0 

14 2 2NO + N N + O + N↔  0 0 0 1 1 1 0 1 1 0 

15 NO + NO N + O + NO↔  0 0 0 0 2 1 0 1 0 1 

16 2N + O NO + N↔  1 0 0 1 0 0 0 1 0 1 

17 2NO + O O + N↔  1 0 0 0 1 0 1 1 0 0 
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Таблица 2 

Значения констант для разных реакций 

k Реакция , ,
f k

A

cм3/(моль ⋅ с) 
,f k

n  , ,
f k

T  K , ,
r k

A   

см6/( моль2 ⋅ с) 
,r k

n  , ,
r k

T  

K 

1 2N + O 2N + O↔  5,8‧1017‧0,5 –0,5 113 200 3,08‧1016‧0,5 –0,5 0 

2 22 2N + O 2N + O↔  5,8‧1017‧0,5 –0,5 113 200 3,08‧1016‧0,5 –0,5 0 

3 2N + N 2N + N↔  5,8‧1017‧4,0 –0,5 113 200 3,08‧1016‧4,0 –0,5 0 

4 2 2 2N + N 2N + N↔  5,8‧1017 ⋅ 1,0 –0,5 113 200 3,08‧1016‧1,0 –0,5 0 

5 2N + NO 2N + NO↔  5,8‧1017‧0,5 –0,5 113 200 3,08‧1016‧0,5 –0,5 0 

6 2O + O 2O + O↔  3,6‧1019‧2,5 –1,0 59 400 3,12‧1016‧2,5 –0,5 0 

7 2 2 2O + O 2O + O↔  3,6‧1019‧1,0 –1,0 59 400 3,12‧1016‧1,0 –0,5 0 

8 2O + N 2O + N↔  3,6‧1019‧0,25 –1,0 59 400 3,12‧1016‧0,25 –0,5 0 

9 2 2 2O + N 2O + N↔  3,6‧1019‧0,25 –1,0 59 400 3,12‧1016‧0,25 –0,5 0 

10 2O + NO 2O + NO↔  3,6‧1019‧0,25 –1,0 59 400 3,12‧1016‧0,25 –0,5 0 

11 NO + O N + O + O↔  1,2‧1019‧20,0 –1,0 755 000 2,9‧1019‧20,0 –1,0 0 

12 2 2NO + O N + O + O↔  1,2‧1019‧1,0 –1,0 75 500 2,9‧1019‧20,0 –1,0 0 

13 NO + N N + O + N↔  1,2 ⋅ 1019‧20,0 –1,0 75 500 2,9‧1019‧1,0 –1,0 0 

14 2 2NO + N N + O + N↔  1,2 ⋅ 1019‧1,0 –1,0 75 500 2,9‧1019‧1,0 –1,0 0 

15 NO + NO N + O + NO↔  1,2‧1019‧20,0 –1,0 75 500 2,9‧1019‧20,0 –1,0 0 

16* 2N + O NO + N↔  2,0‧1012 0,5 38 000 4,4‧1011 0,5 0 

17* 2NO + O O + N↔  2,8‧109 1,0 20 000 1,1‧10100 1,0 4000 

*В данных уравнениях размерность Ar совпадает с Af. 

 

Методика определения скоростей гетерогенных химических 

реакций, протекающих на непроницаемой поверхности материа-

ла. Для каждого из экспериментов, подлежащих анализу, решение 

данной задачи в численном интегрировании системы автомодельных 

уравнений ламинарного пограничного слоя, в которой вместо ис-

пользования граничных условий в выражении (7) задаются массовые 

концентрации атомарных компонент на стенке. Такой подход обла-

дает целым рядом преимуществ по сравнению с использованием за-

писи скоростей гетерогенных реакций рекомбинации атомарных 

компонент на стенке. 
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Во-первых, в его рамках качественно упрощается процедура ре-
шения задачи диффузионной части, так как отпадает необходимость 
итерационного определения концентраций атомарных компонент на 
стенке с учетом удовлетворения граничных условий типа (7). 

Во-вторых, найденные при этом оптимальные концентрации ато-
марных веществ не зависят от формы записи граничных условий (7), 
что дает возможность применять полученное решение задачи к раз-
ным формам записи граничных условий.  

В рамках данной методики расчета решение системы уравнений 
(2)–(4), (8), (9) осуществляется по следующему алгоритму. 

1. В качестве начального приближения для функций f  и h  ис-

пользуется решение для термохимически равновесного воздушного 
пограничного слоя, а для скоростей образования химических веществ 
в результате протекания гомогенных химических реакций задаются 
нулевые значения, что соответствует замороженному пограничному 
слою. 

2. Методом итераций находят численное решение уравнений за-
мороженного пограничного слоя.  

3. Для обеспечения соответствия между расчетными и экспери-
ментальными данными по тепловому потоку, подводимому к стенке, 
организуют внешний итерационный процесс по концентрациям ато-
марных веществ на стенке. Внутри процесса создается внутренний 
цикл по решению уравнений пограничного слоя. 

Решение задачи, найденное в рамках описанного двухконтурного 
алгоритма, не является однозначным, оно позволяет только устано-

вить оптимальную зависимость вида ( )O, N, .w wC C= ϕ  

Выполняя цикл описанных расчетных исследований для всей се-
рии рассматриваемых экспериментов, обозначаем набор таких функ-

ций общим числом Exp.N  

Пример применения изложенного алгоритма. Объектом насто-
ящих исследований являются результаты одного эксперимента по 
нагреву карбида кремния [24], в котором наблюдалась максимальная 
скорость деструкции этого вещества.  

Для этого эксперимента были характерны следующие параметры: 
• давление в пограничном слое 1790 Па; 
• энтальпия торможения в набегающем потоке 23,9 МДж/кг; 
• градиент скорости на внешней границе пограничного слоя  

24 000 м/с; 
• удельный тепловой поток, направляемый к стенке с высокой 

каталитической активностью, 1,25 МВт/м2; 
• температура поверхности карбида кремния 1773 К; 
• удельный тепловой поток, направляемый к поверхности карби-

да кремния, около 0,8 МВт/м2. 
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Соответствующая этим условиям зависимость ( )O, N,w wC C= ϕ  

приведена на рис. 1. 

Профили энтальпии в пограничном слое, изображенные в долях 

от ее значения на внешней его границе, показаны на рис. 2. Цифрами 

1, 2 и 3 обозначены соответственно термохимически равновесный, 

замороженный и неравновесный пограничные слои; сплошная линия 

соответствуют абсолютно каталитической стенке, а пунктирная — 

стенке с конечной каталитичностью. 

 

Рис. 1. Оптимальная зависимость на стенке массовой 

концентрации   атомарного   кислорода  от  массовой 

концентрации атомарного азота 

 

Рис. 2. Профили энтальпии в пограничном слое 

 

Профили мольных концентраций κ атомарных компонент в по-

граничном слое, соответствующие оптимальным концентрациям 

атомарного азота на стенке, приведены на рис. 3. 

В заключение отметим, что, пренебрегая снижением удельного 

теплового потока при исследовании аэротермохимической деструк-

ции карбида кремния [25], можно получить результаты проведенных 

исследований со значительными ошибками. 
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Рис. 3. Профили мольных концентраций атомар-

ных веществ в неравновесном пограничном слое на  

стенке, обладающей конечной каталитичностью: 

а — кислород; б — азот;  1 — 0,2047; 2 — 0,2249;  

3 — 0,2549 

 

Выводы. 1. Сформулирована методика численного решения урав-

нений неравновесного пограничного слоя на стенке, характеризую-

щейся конечной каталитической активностью.  

2. Применение предложенной методики проиллюстрировано на 

примере литературных данных по экспериментальному исследованию 

обтекания карбида кремния диссоциированным потоком воздуха. 
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Modeling the chemical composition of a gas  

in a nonequilibrium air boundary layer on a wall  

with a finite catalytic activity 
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The study of aerothermal destruction of silicon carbide is constantly given increased at-

tention. This is primarily due to its widespread use as a protection against oxidation of 

carbon materials. The rate of aerothermochemical destruction of materials largely de-

pends on the specific heat flux and on the degree of recombination of oxygen atoms on 
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the wall. In this paper, we consider a method for solving the complex problem of high-

temperature non-equilibrium air stream flowing of a material coated with a silicon car-

bide film under conditions of finite catalyticity of the surface of this film. 

 

Keywords: silicon carbide, ablation, carbon, oxidation, kinetic constants 
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