doi: 10.18698/2309-3684-2018-2-4769
The algorithm of the loading surface equation account during integration of constitutive equations system of invariant nonisothermal plasticity theory, based on returning of a representing point to a loading surface equation on each step of calculation was offered. Efficiency of proposed algorithm in combination with different linearization schemas for number of proportional and nonproportional thermomechanical deformation trajectories was explored. Results of simulation of the processes of tubular nickel-based alloy IN738LC specimens testing under proportional (tension-compression, tension-compression with torsion) and nonproportional («circle» and «diamond» with out-of-phase axis strain and temperature changing) cyclic thermomechanical deformation trajectories in operating-temperature range from 450 to 950°C.
[1] Dem’yanushko I.V., Temis Y.M. Izv. Akademii Nauk SSSR. Mechanika Tverdogo Tela – Bull. Ac. of Sc., Mech. of Rig. B., 1975, vol. 5. pp. 111-119.
[2] Temis Y.M. Teoriya neizotermicheskogo plasticheskogo techeniya s izotropnym I anizotropnym uprochneniem [Theory of non-isothermal plastic flow with isotropic and non-isotropic hardening]. Mashinostroenie. Ensiclopedia/ Ed.: K.V. Frolov (head), etc. Moscow, Mashinostroenie. Dinamica I prochnost’ mashin. Teoria mashin I mekhaniz-mov.[Machinery. Dynamic and machine resistance. Theory of machines and mecha-nisms]. vol. 1-3. In 2 books. Book 1//Kolesnikov K.S, etc.; Ed.: Kolesnikov K.S., 1994, pp. 227-231
[3] Dimitrienko Yu.I. Mekhanika sploshnoi sredy. V 4 tomakh. Tom 4. Osnovy mekhaniki tverdykh sred. [Continuum Mechanics. In 4 vols. Vol. 4. Fundamentals of solids mechanics]. Moscow, BMSTU Publ., 2013, 624 p.
[4] Bondar V.S., Gorlov V.B., Frolov A.N. Simulation of nonelastic behavior processes and structural failure under complex loading. Myachenkov V.I., Maltsev V.P., Mayboroda V.P., etc. Rascheti machinostroitelnih construktsii metodom konechnih elementov [Calculation of machinery constructions by a finite-element method]. Ed.:. V.I. Myachenkov. Мoscow, Mashinostroenie, 1989. 520 p.
[5] Bondar V.S., Danshin V.V., Kondratenko А.A. Vestnik PNIPU – PNRPU Mechanics Bulletin. 2015. No. 2. pр. 21-35.
[6] Volkov I.A., Korotkih Y.G. Uravnenia sostoyania vyazkouprugoplasticheskih sred s povregdeniami [Constitutive equations of viscoelastoplastic environments with damages]. Moscow, Fizmatlit, 2008. 424 p.
[7] Volkov I.A., Igumnov L.A. Vvedenie v continualnyu mechaniku povregdennoi sredi [Introduction in continuum mechanics of damaged environment]. Moscow, Fizmatlit, 2017. 304 p.
[8] Makhutov N.A. Uravnenia sostoyania pri malotsyklovom nagryzhenii. [Constitutive equations under low-cycle loading]. Moscow, Nauka. 1981. 244 p.
[9] Temis Y.M., Khudyakova A.D. Matematicheskoye modelirovaniye i chislennyye metody – Mathematical Modeling and Computational Methods, 2017, no. 3, pp. 22-41.
[10] Temis Yu.M., Khudyakova A.D. Simulation of High-Temperature Isothermal Elasto-Plastic Deformation Processes of Testing Samples. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2017, no. 6, pp. 49–67.
[11] Temis Y.M., Alkhimov D.A., Martynova A.D. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie – Bulletin of Samara state aerospace University, 2015, vol. 14, no. 3-1, pp. 24–36.
[12] Chaboche J.L. A review of some plasticity and viscoplasticity constitutive theories. International Journal of Plasticity, 2008, P. 1642-1693.
[13] Bertram A., Olschewski J., Sievert R. Experimental and numerical investigations of thermal-mechanical behaviour of poly- and single-crystalline nickel-base superalloys. Arch. Mech., Warszawa, 1994. Vol. 46, №4, pp. 413-429.
[14] Frenz H., Meersmann J., Ziebs J. et al. High-temperature behaviour of IN738LC under isothermal and thermo-mechanical cyclic loading. Materials Science and Engeneering. 230. 1997. pp. 49-57.
[15] Ziebs J., Meersmann J., Kuhn H.J., Hulsmann N., Olschewski J. Multiaxial Thermomechanical Behaviour of IN738LC Alloy. Multiaxial Fatigue and Design, ESIS 21. 1996. Mechanical Engeneering Publications, London. pp. 83-96.
[16] Meersmann J., Frenz H., Ziebs J., Kuhn H.J., Forest S. Thermo-mechanical behaviour of IN738LC and SC16. CP-569. Canada. 1995. 11 p.
[17] Bertram A., Olschewski J., Sievert R. Experimental and numerical investigations of thermal-mechanical behaviour of poly- and single-crystalline nickel-base superalloys. Arch. Mech. 1994. Vol.46, №4, Warszawa. pp. 413-429.
[18] Meersmann J., Ziebs J., Kuhn H.J., Sievert R., Olschewski J., Frenz H. The stress-strain behaviour of IN738LC under thermomechanical uni and multiaxial fatigue loading. Proc. Of the Symposium held at Petten. Nethelands. 22-24 May. 1995. pp. 425-434.
[19] Abdel-Karim M., Ohno N. Kinematic hardening model suitable for ratcheting with steady-state. International Journal of Plasticity. 2000. Vol.16. pp. 225-240.
[20] Taleb L. About the cyclic accumulation of the inelastic strain observed in metals subjected to cyclic stress control. International Journal of Plasticity. 2013. Vol.43. pp. 1-19.
[21] Neto E., Peric D., Owen D. A model for elastoplastic damage at finite strains: algorithmic issues and applications. Engeneering Computations, Vol. 11. №3. pp. 257-281.
[22] Neto E., Peric D., Owen D. Computational methods for plasticity: theory and applications. John Wiley & Sons Ltd. 2008. 816 p.
[23] Kreig R.D., Kreig D.B. Accuracies of numerical solution methods for the elasticperfectly plastic model. Journal of Pressure Vessel Technology. 1977. pp. 510- 515.
[24] Ortiz M., Popov E.P. Accuracy and stability of integration algorithms for elastoplastic constitutive relations. International Journal for Numerical Methods of Engineering. 1985. Vol. 21. pp. 1561-1576.
[25] Papadopoulos P., Taylor R.L. On the application of multi-step integration methods to infinitesimal elastoplasticity. International Journal for Numerical Methods in Engineering. 1994. Vol. 37, №18. pp. 3169 – 3184.
[26] Ascher U.M., Petzold L.R. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. 1997. 315 p.
[27] Temis Y.M. Trudy TsIAM – Proceedings of CIAM . 1980, no. 918, pp. 1–24.
[28] Shaw S.W. Nickel-base superalloys. Patent 4207098 USA. Publ. 10.06.1980.
[29] Kachanov L.M. Teoriya polzuchesti [Creep theory]. Moscow, Fizmatgiz Publ., 1960. 455 p.
[30] Radnovich D.C. Methods of extrapolating low cycle fatique data to high stress amplitudes. University of central Florida, 2007, P. 49-57.
Темис Ю.М., Худякова А.Д. Численное моделирование процессов неизотермического упругопластического деформирования конструкционных материалов. Математическое моделирование и численные методы, 2018, № 2, с. 47–69.
Количество скачиваний: 513