
ISSN 2309-3684 

Математическое 
моделирование
и численные методы

Темис Ю.М., Худякова А.Д. Численное моделирование
процессов неизотермического упругопластического
деформирования конструкционных материалов. Математическое
моделирование и численные методы, 2018, № 2, с. 47–69.

Источник: https://mmcm.bmstu.ru/articles/163/

Параметры загрузки:

IP: 216.73.216.47

13.02.2026 04:44:59



Численное моделирование процессов неизотермического упругоспластического… 

УДК 539.374 

Численное моделирование процессов                                      
неизотермического упругопластического                               

деформирования конструкционных материалов  

© Ю.М. Темис1, 2, А.Д. Худякова1, 2 

1 ЦИАМ им. П.И. Баранова, Москва, 111116, Россия 
2 МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

 
Предложен алгоритм учета уравнения поверхности нагружения при интегрировании 
системы определяющих соотношений инвариантной неизотермической теории пла-
стичности, основанный на возвращении изображающей точки на поверхность нагру-
жения на каждом шаге расчета. Исследована эффективность работы алгоритма в 
комбинации с различными схемами линеаризации для ряда пропорциональных и непро-
порциональных термомеханических траекторий деформирования. Приведены резуль-
таты моделирования процессов испытаний трубчатых образцов из никелевого 
сплава IN738LC по пропорциональным (растяжение-сжатие, растяжение-сжатие 
совместно с кручением) и непропорциональным («круг» и «ромб» с противофазным 
относительно изменения осевых деформаций изменением температуры) циклическим 
термомеханическим траекториям деформирования в диапазоне изменения рабочих 
температур от 450 до 950 °С. 
 
Ключевые слова: пластичность, численное моделирование, коррекция погрешно-
сти, модель неупругости, сложное деформирование, неизотермические условия, ис-
пытания образцов. 

 
Введение. Модели типа течения являются основным и наиболее 

широко используемым в инженерной практике классом феноменоло-
гических моделей неупругого поведения материала. Различные под-
ходы к построению таких моделей и множество их вариантов предло-
жены исследователями в ряде работ [1-21]. Необходимые для 
дальнейшей реализации в комплексах программ конечно-элементного 
расчета конструкций численные алгоритмы рассмотрены в работах 
[4,6,7,10,11,21-27]. При этом не все исследователи [4,6,7] включают 
уравнение поверхности нагружения в систему определяющих соотно-
шений, подлежащих интегрированию, что может приводить к суще-
ственному отклонению изображающей точки от этой поверхности в 
ходе расчета. При включении уравнения поверхности нагружения в 
систему наравне с дифференциальными соотношениями система не-
линейных обыкновенных дифференциальных уравнений (ОДУ) пере-
ходит в систему нелинейных дифференциально-алгебраических урав-
нений (ДАУ). Это приводит к необходимости применять для ее 
решения специальные численные методы  [25,26] или же разрабаты-
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вать методы учета уравнения поверхности нагружения при интегриро-
вании нелинейной системы ОДУ [10, 11, 21-24]. В настоящей работе 
предложен алгоритм учета уравнения поверхности нагружения при 
численном моделировании процессов нагружения с использованием 
соотношений инвариантной теории пластического течения [1,2]. Ал-
горитм базируется на самокорректирующемся шаговом методе [27] и 
является модификацией алгоритма коррекции погрешности [10,11], 
расширенного на случай неизотермического нагружения. Исследова-
ние эффективности предложенного численного алгоритма и все вы-
числительные эксперименты, результаты которых приведены в насто-
ящей работе, проведены для никелевого сплава IN738LC [28] с 
использованием неизотермической модели инвариантной теории пла-
стичности [9] и модели ползучести типа течения [29], параметры ко-
торых были определены по результатам простого циклического жест-
кого деформирования, полученным в работе [30], и кривым 
ползучести [17], соответственно, согласно алгоритмам, описанным в 
работах [9,10]. 

Определяющие соотношения неупругости. В соответствии с 
представлениями теории течения, примем, что приращения деформа-
ций упругости e

ijdε , пластичности p
ijdε  и ползучести c

ijdε  являются не-
зависимыми и в сумме представляют собой приращения полных де-
формаций ijdε . Будем рассматривать неизотермическое 
деформирование однородных и начально изотропных материалов, из-
менение объема которых происходит упруго.  

Приращения упругих деформаций определим согласно обобщен-
ному закону Гука, а приращения пластических деформаций – согласно 
инвариантной теории пластичности [1,2]. Для определения прираще-
ния деформаций ползучести используем теорию течения [29]. В ре-
зультате получим следующую систему определяющих соотношений 
модели: 
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где 1 ( ) ( ) ,
( ) ( )ijkl ik jl ij kl

T TA
E T E T
+µ µ

= δ δ − δ δ  - тензор податливости, компо-

ненты которого зависят от температуры T , ( )E T  - модуль упругости, 
( )Tµ  - коэффициент Пуассона, ijσ  - компоненты тензора напряжений, 

Τα( )  - мгновенный коэффициент температурного расширения, p
ijklC  и 

p
ijΨ - тензоры параметров пластичности, ϕ  - функция упрочнения 

[1,2], ( )0 2ij ij ijsσ = −ρ  - тензор «активных» напряжений, 1
3ij ij ij ijs = σ − σ δ  

- девиатор тензора напряжений,  f - функция поверхности пластиче-
ского деформирования [1,2], ( , )T Tσ χ  - параметр пластичности мате-
риала, характеризующий изотропное упрочнение, χ  - параметр Од-

квиста,  ( )1/2p p
ij ijd d dχ = ε ε , 2

3
c c c
i ij ijε = ε ε    и  3

2i ij ijσ = σ σ  - 

интенсивности скоростей деформаций ползучести и напряжений, со-
ответственно, t  -  время, ( )m T  и ( )B t  - параметры ползучести матери-
ала. 

Компоненты тензоров p
ijklC  и p

ijΨ  отличны от нуля только в том 
случае, когда выполняется условие активного нагружения: 

( )
0 0

20 2 .
4

ij ij ijT
ij ij T Tds dT dT

T T
  ∂ρ  σ σ  ∂σ

σ − > σ ∧ = σ     ∂ ∂    
         (2) 

В противном случае реализуется либо разгрузка, либо нейтральное 
нагружение. 

Рассмотрим вариант модели пластичности [9], в которой для не-
изотермического деформирования принято ( , )ij ija Tρ = χ ξ , ijξ  - компо-
ненты структурного тензора, отвечающего за анизотропию, приобре-
тенную в процессе упругопластического деформирования, 

( )2 ,p
ij ijd K J dξ = ε  2 ij ijJ s s=  - второй инвариант девиатора напряжений, 

( , )a Tχ  и ( )2K J  - параметры пластичности материала. 
Алгоритм численной реализации соотношений неупругости. В 

более удобной для программной реализации матричной форме [1,2,12] 
первое уравнение системы определяющих соотношений (1) с учетом 
выражений для приращения деформаций упругости, пластичности и 
ползучести принимает вид   

{ } [ ]( ){ } { } { }( ) { } { } ,p p Td A C d dT dt dT ε = + σ + Ω + Ψ + + Φ + α     (3)     
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где [ ]A  и pC    - матрицы податливости и параметров пластичности, 

соответственно,{ } [ ]{ }A
T

∂
Ω = σ

∂
, { } { }13

2
m
i B s−Φ = σ , { }pΨ , { }dε , { }dσ , 

{ }σ  и { }s - шестимерные векторы, поставленные в соответствие тен-

зорам p
ijΨ , ijdε , ijdσ , ijσ  и ijs , { } { }1 1 1 0 0 0 TTα = α . 

Первые два слагаемых в правой части (3) представляют собой 
сумму приращений деформаций упругости и пластичности с учетом 
влияния на них изменения температуры, третье – приращение дефор-
маций ползучести, а четвертое – приращение температурных дефор-
маций (деформаций температурного объемного расширения или сжа-
тия). Все эти приращения за исключением приращения 
температурных деформаций в сумме составляют приращение механи-
ческих деформаций  { } { } { }mech Td d dTε = ε − α , вектор{ }mechdε  постав-

лен в соответствие тензору ( )mech
ij ij ijd d T dTε = ε −α δ . 

Условие активного нагружения (2) в матричной форме можно за-
писать в виде 

 { } { } { } { } { } ( )
0 0

20 2 ,
4

T
T Tds dT dT

T T

 σ ⋅ σ ∂ ρ  ∂σ  σ ⋅ − > σ ∧ = σ     ∂ ∂    

 



    (4) 

где { }0σ , { }ds  и { }ρ  - шестимерные векторы, поставленные в со-

ответствие тензорам 0
ijσ , ijds  и ijρ , так, чтобы скалярное произведение 

взятых попарно векторов было равно результату свертки соответству-
ющих тензоров второго ранга. 

Программы нагружения. В зависимости от программы нагруже-
ния может быть задан либо закон изменения напряжений («мягкое» 
нагружение), либо закон изменения механических деформаций 
(«жесткое» нагружение). Возможны и случаи смешанного нагруже-
ния, при котором режимы «жесткого» и «мягкого» нагружения чере-
дуются [19,20]. Независимо от режима механического нагружения за-
дан закон изменения температуры. Процесс моделирования состоит в 
определении по заданным законам изменения напряжений («мягкое» 
нагружение) или механических деформаций («жесткое» нагружение) 
и заданному закону изменения температур, которые в совокупности 
будем называть законом изменения термомеханической нагрузки, не-
известных полных деформаций и всех их составляющих («мягкое» 
нагружение) или неизвестных напряжений и всех составляющих де-
формаций («жесткое» нагружение). 
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Схемы линеаризации. Процесс деформирования рассматриваем 
как последовательное нагружение тела малыми приращениями изме-
няемой по заданному закону термомеханической нагрузки, реакцию 
тела на которую считаем линейной. Система нелинейных уравнений 
(3) при таком подходе должна быть линеаризована. В качестве про-
стейшего явного метода линеаризации будем считать входящие в (3) 
нелинейные величины на (k+1)-ом шаге постоянными и определять их 
по напряженно-деформированному состоянию (НДС) в начале (k+1)-
ого шага, которое совпадает с НДС в конце k-ого шага и является из-
вестным. При более общем подходе подлежащую линеаризации мат-
рицу параметров пластичности pC    на (k+1)-ом шаге будем заменять 
линейной комбинацией вида  

1

11
ˆ (1 ,

mp p p p

k kk
C C C C

−

++
      ≈ = −β) +β                    (5) 

где 
1

ˆ p

k
C

+
 
   - полученная в результате линеаризации системы на 

( 1)k + -ом шаге матрица,  
0

1

p p

k k
C C

+
   =     - матрица pC   , определен-

ная по НДС конца k-ого шага, 
1

1

mp

k
C

−

+
    - матрица pC   , определенная 

по НДС, полученному в m -ом приближении в конце ( 1)k + -ого шага, 
0 ≤ β ≤1 . Аналогично линеаризуем и остальные нелинейные величины 
из уравнения (3). При β = 0  возвращаемся к явной схеме.  

Для интегрирования системы определяющих соотношений не-
упругости исследователи применяют как явную схему Эйлера с выбо-
ром шага [6,7], так и более сложные методы, например, метод Рунге-
Кутта 4 порядка точности с автоматическим выбором шага [4]. Однако 
кроме соотношений связи приращений деформаций с приращениями 
напряжений с систему определяющих соотношений (1) входит и урав-
нение поверхности нагружения 0f = .  При интегрировании системы 
(3) без учета этого уравнения накопление погрешности от шага к шагу 
приводит к нарушению условия активности нагружения (2). Устра-
нить это нарушение путем выбора более точной схемы интегрирова-
ния не удается.  

Алгоритм учета уравнения поверхности нагружения. Для ком-
пенсации отклонения значения f  от нуля в [11] предложен вариант 
коррекции погрешности для изотермических моделей упругопластич-
ности, основанный на введении дополнительного условия равенства 
нулю функции f и его учета на каждом шаге упругопластического рас-
чета, путем добавления этого условия в линеаризованную систему (3) 
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с помощью метода множителей Лагранжа. Использование метода мно-
жителей Лагранжа для включения в систему условия коррекции, не-
смотря на удобство применения, может приводить к нарушению за-
кона пластического течения, ассоциированного с поверхностью 
нагружения, так как направление вектора пластических деформаций 
при решении модифицированной системы не контролируется. В 
настоящей работе предложено учитывать дополнительное корректи-
рующее условие, рассмотренное в [11], другим способом, основанным 
на варьировании длины вектора пластических деформаций, без изме-
нения его направления, полученного в основном расчете [2]. 

Рассмотрим модифицированный вариант алгоритма коррекции по-
грешности, расширенный на случай неизотермического нагружения 
на примере модели [9]. Обозначим через kf  значение функции f, вы-
численное по НДС, полученному в конце шага с номером k, 0kf ≠ . 
Запишем в конце ( 1)k + -ого шага выражение для 1kf +  и потребуем, 
чтобы было соблюдено условие 1 0kf + = : 

{ }( ) { }( )
( )

1 1 1 1 1 1 11 1
2

1 1

{ } ( , ) { } ( , )

( , ) 0,
k k k k k k kk k

k k

f s a T s a T

T
+ + + + + + ++ +

+ +

= − χ ξ ⋅ − χ ξ −

− σ χ =

 

 

     (6) 

где { }s , и { }ξ  - шестимерные векторы, поставленные в соответствие 

тензорам ijs  и ijξ  так, чтобы их скалярное произведение было равно 
результату свертки соответствующих тензоров второго ранга. 

Раскладываем в ряд Тейлора в точке ( , )k kTχ  функции ( , )a Tχ  и 
( , )Tσ χ  и, пренебрегая членами второго порядка малости, получаем 

условие 

{ } { }( ) { } { }( ) ( )

{ } { } { }( )
{ } { }

{ } { }

2

0
1 1

0
1

0
1 0,

k

Tk kk k kk k

f
p

k k kk k

T
T kk k

k k

T
T kk k

k k

s a s a

s a K
a T
T T
a

+ +

+

+

− ξ ⋅ − ξ − σ +

+ σ ⋅ ∆ − ∆ε −
 ∂σ∂

− σ ⋅ ξ + 2σ ∆ − ∂ ∂ 
 ∂σ∂

− σ ⋅ ξ + 2σ ∆χ =  ∂χ ∂χ 

 

 



 









                  (7) 
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где { } { } { }( )0 2 s aσ = − ξ  , а первые два слагаемых представляют собой 

величину kf . После несложных преобразований получаем итоговое 
дополнительное нелинейное условие связи между приращениями де-
виатора напряжений и приращениями пластических деформаций 

{ } { } { } { }
{ } { }

{ } { } { } { }

0 0
1 1

0
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0

1 1
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p
k k k kk k k
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T kk k
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p pT
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k k

f s a K
a T
T T
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+ +

+

+ +

+ σ ⋅ ∆ − σ ⋅ ∆ε −
 ∂σ∂

− σ ξ + 2σ ∆ − ∂ ∂ 
 ∂σ∂

− σ ξ + 2σ ∆ε ⋅ ∆ε =  ∂χ ∂χ 

 







 

       (8) 

Это условие обычно не выполняется в конце шага расчета.  
Для коррекции погрешности вычислений в упругопластическом 

расчете по аналогии с самокорректирующимся шаговым методом [27] 
запишем линеаризованное в конечных приращениях соотношение (3) 
и введем весовой множитель λ : 

{ } { } { } { }( )
{ }

{ } { }
1

11 11 11

111

ˆ ˆ

ˆ ˆ .

p
k

e p p
kk kk kk

T
kkk

C T

dt T
+

++ ++ ++

∆ε

+++

 ∆ε = ∆ε + λ ∆σ + Ψ ∆ + 

+ Φ + α ∆

         (9) 

С учетом (9) получим следующие соотношения для определения 
{ }∆σ  и { }p∆ε : 

{ } ( ) { }(
{ } { }( ) { } )

1

1 11 1

1 111 1

ˆ ˆ

ˆ ˆ ˆ ,

p mech
k kk k

p
k kkk k

A C

T t

−

+ ++ +

+ +++ +

   ∆σ = + λ ∆ε −   
− Ω +λ Ψ ∆ − Φ ∆

               (10)  

{ } { } { }( )111 11
ˆ ˆ .p p p

kkk kk
C T +++ ++
 ∆ε = λ ∆σ + Ψ ∆               (11) 

При подстановке вычисленных таким образом приращений в усло-
вие (8) в конце ( 1)k + -ого шага получаем алгебраическое нелинейное 
уравнение относительно введенного весового множителя λ . Все 
остальные входящие в (8) величины либо имеют индекс k, то есть вы-
числены в конце предыдущего, k-ого шага, либо заданы в начале 
( 1)k + -ого шага как приращения с индексом 1k + , либо определены в 
упругопластическом расчете без коррекции. Полученное уравнение 
решаем методом Ньютона с начальным приближением 1λ = . 
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В качестве другого варианта сокращения отклонения значения f  
от нуля с использованием условия (8) при линеаризации соотношений 
по схеме (5) на каждом шаге можно выбирать оптимальный параметр 
β , решая задачу минимизации 

( )1 minkf + β → , 0 ≤ β ≤1 .                                 (12) 

Методы коррекции погрешности, основанные на «возвращении» 
на поверхность нагружения на каждом шаге, при интегрировании си-
стемы определяющих соотношений неупругости позволяют учиты-
вать все уравнения системы (1), включая и уравнение поверхности 
нагружения.  

Организация счета. При организации процесса численного моде-
лирования необходимо осуществить учет условия активности нагру-
жения (4) и дополнительного условия коррекции (8), что удобно де-
лать, разбивая временной шаг на «прогнозирующий» и 
«корректирующие» этапы. В работах [21,22] применяется метод 
«упругий предиктор/пластический корректор»: на каждом временном 
шаге после «прогнозирующего» упругого расчета на основе получен-
ного в его результате НДС выполняют «корректирующий» чисто пла-
стический расчет, в результате которого осуществляется «посадка» 
изображающей точки на поверхность нагружения.  

В настоящей работе для учета условия активности нагружения (4) 
в начале (k+1)-ого шага после задания 1kt +∆ , 1 1k k kt t t+ += ∆ + ∆ , и соот-
ветствующего ему приращения термомеханической нагрузки осу-
ществляем предварительный «прогнозирующий» упругий расчет по 
формуле (10) при 0pC  ≡  , { } 0pΨ ≡ , после чего проверяем условие 
(4) для полученного в результате упругого расчета НДС. Если условие 
активности нагружения (4) выполнено, переходим к упругопластиче-
скому расчету по формулам (10)-(11), определению из условия (8) оп-
тимальных параметров β  и λ  и итоговому «корректирующему» упру-
гопластическому расчету с использованием оптимальных параметров.  

 В противном случае полученные в «прогнозирующем» упругом 
расчете приращения напряжений, полных деформаций и деформаций 
упругости и ползучести считаем итоговыми, а шаг расчета – упругим. 
Блок-схема описанного алгоритма для случая «жесткого» нагружения 
представлена на рис. 1. 

Исследование эффективности алгоритма численной реализа-
ции. С целью выбора оптимальной схемы линеаризации и исследова-
ния эффективности предложенного алгоритма учета уравнения по-
верхности нагружения было проведено моделирование процессов 

54 
 



Численное моделирование процессов неизотермического упругоспластического… 

деформирования образцов из никелевого сплава IN738LC[28] по раз-
личным термомеханическим траекториям, экспериментальные иссле-
дования которых описаны в работах [13-19].  

 

Рис. 1. Блок-схема алгоритма «жесткого» нагружения 

Термомеханические траектории. Рассмотренные законы изме-
нения осевых 11

mechε = ε  и сдвиговых 122 mechγ = ε  механических деформа-
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ций представлены на рис.2 в двух вариантах: 1 - траектория деформи-
рования на плоскости 3ε − γ ; 2 - законы изменения ε  и 3γ  по 
времени. На рис. 3 приведены рассмотренные в сочетании с траекто-
риями механического деформирования законы изменения темпера-
туры процесса по времени. 

   
а б в 

  
 

 

г д е 
Рис. 2. Траектории изменения осевых и сдвиговых механических деформаций 
 

     
а б в г д 

Рис. 3. Законы изменения температуры 

Кроме вида траектории механического деформирования и закона 
изменения температуры для осуществления процесса моделирования 
необходимо задать размах механических деформаций ∆ε , время осу-
ществления полного цикла деформирования cyct , которое при задан-
ном размахе деформаций определяет скорость приращений деформа-
ций ползучести, размах температур T∆  и среднее значение 
температуры в цикле mT . Описание и характеристики пятнадцати рас-
смотренных термомеханических траекторий приведены в табл. 1. Для 
всех температурных режимов, кроме режима постоянной температуры 

mT T const= =  , было выбрано 500 CT∆ = ° . 
Демонстрация работы алгоритма численной реализации. 

Предложенный метод коррекции позволяет существенно сократить 
накапливающуюся в ходе упругопластического расчета погрешность, 
«возвращая» на каждом шаге изображающую точку на поверхность 
нагружения 0f = . В качестве иллюстрации этого процесса на рис. 4 
приведены графики изменения значения функции f  в ходе расчета 
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(рис. 4а и рис. 4в) и траектория изменения напряжений в координатах 
3σ− τ , 11σ = σ , 12τ = σ  для двух режимов: «без коррекции» ( 1λ = ) – 

черная линия и «с коррекцией» (выбор λ  из условия (8)) – красная ли-
ния (рис. 4б и рис. 4г).  

Таблица 1 

Рассмотренные термомеханические траектории 
 

Тип деформиро-
вания № 

Закон из-
менения 

ε  

Закон изменения 
T 

∆ε
,%  cyct , c  mT

,°C  

Одноосное 

1 

Рис. 2а 

Изотермическое 

1.2 

2400 450 
2 24 850 
3 Рис. 3а 2400 700 
4 Рис. 3б 2400 700 
5 Рис. 3в 240 700 

Пропорцио-
нальное 

6 Рис. 2б 
Изотермическое 0.84 24 850 

7 Рис. 3б 0.84 240 700 
8 Рис. 2в Рис. 3г 0.87 269 700 

Н
еп

ро
по

рц
ио

- 
на

ль
но

е 

«Круг» 
9 Рис. 2г 

Изотермическое 
1.2 

240 450 
10 24 850 
11 240 850 

«Ромб» 12 Рис. 2д 24 850 
«Ба-

бочка» 13 Рис. 2е 0.96 135 850 

«Круг» 14 Рис. 2г Рис. 3д 1.2 240 700 
«Ромб» 15 Рис. 2д Рис. 3в 1.2 240 700 

Графики получены при моделировании процесса циклического де-
формирования трубчатого образца из никелевого сплава IN738LС по 
термомеханическим траекториям №10 (рис. 4а,б) и № 12 (рис. 4в,г) 
(табл. 1). Шаг по времени постоянен и составляет 0.1с. По горизон-
тальной оси отмечены номера циклов деформирования N , всего было 
промоделировано 20 циклов. Точками на рис. 4б обозначена траекто-
рия изменения напряжений, полученная в предельном стабильном 
цикле в эксперименте [15]. При расчете использована полностью яв-
ная схема линеаризации ( 0β = ). 

Согласно рис. 4 при расчете в режиме «без коррекции» значение 
функции f  сильно отклоняется от нуля не только на участках с упру-
гим расчетом (в этом случае 0f < ), но и при упругопластическом рас-
чете, что и является следствием накопления погрешности в совокуп-
ности с отсутствием учета уравнения поверхности нагружения 0f = . 
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При расчете в режиме «с коррекцией» отклонения на упругопластиче-
ских участках устранены. 

  
а б 

  
в г 

Рис. 4. Моделирование процесса деформирования с использованием полностью 
явной схемы; режим «без коррекции» - черная линия, режим «с коррекцией» - 

красная линия, точки – эксперимент [15]: 
а –  термомеханическая траектория №10, отклонение значения функции f от нуля в ходе расчета;  

б – термомеханическая траектория №10, траектория изменения напряжений;  
в – термомеханическая траектория №12, отклонение значения функции f от нуля в ходе расчета 

г – термомеханическая траектория №12, траектория изменения напряжений 
Выбор схемы линеаризации. Были рассмотрены три схемы лине-

аризации, каждая из них в режимах «без коррекции» и «с коррекцией»: 
полностью явная схема ( 0β = ), полунеявная схема ( 0.5β = ), полуне-
явная схема с оптимальным выбором β  на каждом шаге согласно (12).  

Основным критерием определения эффективности алгоритма 
была выбрана его способность не допускать существенных отклоне-
ний значения f от нуля при упругопластическом расчете на протяже-
нии всего процесса моделирования. За «наихудший вариант» условно 
была выбрана явная схема линеаризации ( 0β = ) при расчете «без кор-
рекции». Остальные методы расчета сравнивались с «наихудшим ва-
риантом» посредством вычисления и сравнения соотношений 

0
max max

/f f  и 0/f f , где  
max

f  , f
 
 и 0

max
f , 0f  отклонения 

значения f от нуля, максимальные и средние, при упругопластическом 
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расчете рассматриваемым методом и «наихудшим вариантом», соот-
ветственно. Работа алгоритма в режиме «с коррекцией» сводится к ре-
шению нелинейного алгебраического уравнения методом Ньютона, 
который не всегда обладает сходимостью при начальном приближе-
нии 1λ = , соответствующем полученному НДС  при расчете «без кор-
рекции». На данном этапе предложено пропускать проблемный шаг 
расчета, оставляя его без коррекции, а вопрос о прохождении «слож-
ных» точек траектории – открытым. Сведения о доле ncN  таких шагов 
среди всех шагов упругопластического расчета при использовании 
разных схем линеаризации так же были подвергнуты анализу, а откло-
нения значения f от нуля в таких точках не исключались из рассмотре-
ния при сравнении методов расчета. 

На первом этапе моделирование процесса циклического деформи-
рования (20 циклов деформирования) по каждой из термомеханиче-
ских траекторий (табл. 1) было проведено с использованием полно-
стью явной схемы ( 0β = ). Согласно полученным результатам, 
применение «режима коррекции» оказалось наиболее действенным  
для траекторий № 1, 2, 6 и 10 ( 0.5%ncN < ) и позволило существенно 
уменьшить величину максимального и среднего отклонений более чем 
на 75% и 97% соответственно. При этом можно выявить и проблемные 
траектории (№9, 11, 14), для которых «сложных» точек в режиме «с 
коррекцией» для явной схемы линеаризации оказалось слишком много 
( ncN ≥ 15%). Одна из таких траекторий (№9) была выбрана для срав-
нения эффективности остальных методов, результаты сравнения кото-
рых с «наихудшим вариантом» приведены в табл. 2, eN  - доля шагов 
упругого расчета среди всех шагов, n  - среднее количество итераций 
метода Ньютона в режиме «с коррекцией». Как следует из приведен-
ных в табл. 2 результатов, для любого из рассмотренных вариантов 
линеаризации, расчет в режиме «с коррекцией»  сокращает как макси-
мальное, так и среднее отклонение значения f  от нуля. Наилучшим 
при этом, несмотря на не самое низкое количество точек с отсутствием 
сходимости алгоритма коррекции ( 5%ncN = ), показал себя алгоритм 
с использованием полунеявной схемой линеаризации с оптимальным 
выбором β , который и был выбран для всех дальнейших расчетов. 

Для выбранного алгоритма приближение к поверхности 0f =  
происходит в два этапа: I - после определения по НДС, полученному в 
первом приближении согласно (5), матрицы параметров пластичности 

1

1

p

k
C

+
    и остальных подлежащих линеаризации величин решаем за-
дачу минимизации (12); II -  после использования в (5) полученного в 
результате этой минимизации β , решаем нелинейное алгебраическое 
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уравнение (8) относительно λ . Полученное λ  и используем для полу-
чения итогового НДС в конце шага.  

Таблица 2 

Результаты сравнения схем линеаризации 

Метод 0β =  0.5β =  Оптимальный вы-
бор β  

Коррекция - + - + - + 
0

max max
/f f  1 0.9924 0.0932 0.0023 0.1063 0.0019 

0/f f  1 0.8675 0.1469 0.0001 0.0291 0.0001 
eN  , % 15% 9% 1% 1% 1% 1% 

ncN  , % - 99% - 0% - 5% 
n  - 5 - 2 - 2 

 
Значения β , полученные в результате моделировании 20 циклов 

деформирования по термомеханической траектории №9 с временным 
шагом 1с, представлены на рис. 5а, а демонстрация работы метода с 
оптимальным выбором β  в сравнении с двумя другими – на рис. 5б. 
Черной сплошной линией на рис. 5б изображена зависимость норми-
рованного значения f  от номера цикла полученная при использова-
нии полунеявной схемы ( 0.5β = ) в режиме «без коррекции», голубой 
сплошной линией – та же зависимость для метода с оптимальным вы-
бором β  в режиме «без коррекции» и красной сплошной линией – для 
метода с оптимальным выбором β  в режиме «с коррекцией».  

При сравнении черного и голубого графиков можно оценить ра-
боту первого этапа метода с оптимальным выбором β , на котором ре-
шается задача минимизации (12) при сравнении голубого и красного – 
работу второго этапа, режима «с коррекцией».  

  
а б 

Рис. 5. Работа полунеявной схемы линеаризации с оптимальным выбором  β  
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Численное моделирование процессов испытаний образцов из 
сплава IN738LC. В работах [13-18] приведены результаты экспери-
ментального исследования процессов испытаний трубчатых образцов 
из никелевого сплава IN738LC по некоторым из рассмотренных тер-
момеханических траекторий (табл. 1). 

На рис. 6 приведены петли циклического деформирования, полу-
ченные в результате моделирования процесса деформирования по тер-
момеханическим траекториям №1 (изотермическое осевое, рис. 6а), 
№3 и №4 (неизотермическое осевое, рис. 6б), черными линиями изоб-
ражены 1-20-е циклы расчета, красными – 20-е циклы расчета, точ-
ками – предельные стабильные циклы, полученные в результате экс-
перимента [17] (рис. 6а), [16] (рис. 6б). 

  
а б 

Рис. 6. Петли осевого циклического деформирования:  
1-20 циклы, расчет – черные линии;  

20 цикл, расчет – красные линии; 
 а – изотермические условия, точки – эксперимент [17]; 

 б – неизотермические условия, точки – эксперимент [16] 

В работах [14-16] описана термомеханическая траектория (траек-
тория №8), характерная для точки передней кромки лопатки первой 
ступени газовой турбины, включающая в себя этапы разогрева, раз-
гона, базовой нагрузки, замедления и отключения. Нагружение в этом 
случае является неизотермическим, но пропорциональным: и ε , и 

3γ  изменяются во времени по одному и тому же закону. На рис. 7а 
и 7б в координатах Τ −σ  и Ν −σ , соответственно, черной линией по-
казаны траектории изменения осевых σ  и сдвиговых 3τ  напряже-
ний, полученные в результате моделирования 1-ого цикла по термоме-
ханической траектории №8 (они совпадают, как и ожидалось для 
пропорционального нагружения), а точками отмечены результаты экс-
перимента [16]: черными – осевые напряжения, красными – сдвиговые 
напряжения.  
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а б 

Рис. 7. Траектории изменения напряжений при деформировании образца по тер-
момеханической траектории №8: осевые и сдвиговые напряжения, расчет – чер-

ные линии; осевые напряжения, эксперимент [16] – черные точки; сдвиговые 
напряжения, эксперимент [16] – красные точки. 

На рис. 8 приведены результаты моделирования процесса непро-
порционального деформирования по термомеханической траектории 
№14 (неизотермическое деформирование по траектории «круг» с про-
тивофазным относительно осевых деформаций изменением темпера-
туры). Траектория напряжений для 1-ого и 2-ого циклов расчета  пред-
ставлена на рис. 8а, черной линией изображения расчетная 
траектория, черными точками – эксперимент [14]. На рис. 8б представ-
лена траектория напряжений с 1-ого по 10-ый циклы расчета. На рис. 
8в и 8г в координатах ε −σ  и 3 3γ − τ , соответственно, изображены 
петли циклического деформирования: черной линией - с 1-ого по 10-
ый циклы расчета, красной линией – 1-ый цикл расчета, красными точ-
ками -  1-ый цикл эксперимента [14]. 

На рис. 9 приведены результаты моделирования процесса непро-
порционального деформирования по термомеханической траектории 
№15 (неизотермическое деформирование по траектории «ромб» с про-
тивофазным относительно осевых деформаций изменением темпера-
туры).  

Траектория напряжений для 1-ого и 2-ого циклов расчета  пред-
ставлена на рис. 9а, черной линией изображения расчетная траекто-
рия, черными точками – эксперимент [18].  На рис. 9б представлена 
траектория напряжений с 1-ого по 10-ый циклы расчета. На рис. 9в и 
9г в координатах ε −σ  и 3 3γ − τ , соответственно, изображены 
петли циклического деформирования: черной линией - с 1-ого по 10-
ый циклы расчета, красной линией – 1-ый цикл расчета, красными точ-
ками -  1-ый цикл эксперимента [18]. 
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а б 

  
в г 

Рис. 8. Деформирование образца по термомеханической траектории №14: траек-
тория изменения напряжений: 

а – 1-2 циклы, расчет – черные линии; 1-2 циклы, эксперимент [14] – черные точки;  
б – 1-10 циклы, расчет – черные линии; петли циклического деформирования;  

в – осевые компоненты, 1-10 циклы, расчет – черные линии; 1 цикл, расчет – красные линии; 1 цикл, 
эксперимент [14] – красные точки; 

г – сдвиговые компоненты, 1-10 циклы, расчет – черные линии; 1 цикл, расчет – красные линии; 1 
цикл, эксперимент [14] – красные точки. 

  
а б 

  
в г 

Рис. 9. Деформирование образца по термомеханической траектории №15: траек-
тория изменения напряжений: 

а – 1-2 циклы, расчет – черные линии; 1-2 циклы, эксперимент [15] – черные точки; 
б – 1-10 циклы, расчет – черные линии; петли циклического деформирования;  

в – осевые компоненты, 1-10 циклы, расчет – черные линии; 1 цикл, расчет – красные линии; 1 цикл, 
эксперимент [15] – красные точки; 

г – сдвиговые компоненты, 1-10 циклы, расчет – черные линии; 1 цикл, расчет – красные линии; 1 
цикл, эксперимент [15] – красные точки. 

63 
 



Ю.М. Темис, А.Д. Худякова 

Заключение. Учет уравнения поверхности нагружения при инте-
грировании системы определяющих соотношений неупругости обес-
печивает «возвращение» изображающей точки на поверхность нагру-
жения на каждом шаге. Это «возвращение» необходимо для 
компенсации погрешности, накапливающейся в упругопластическом 
расчете в результате линеаризации соотношений, особенно при моде-
лировании длительных, например циклических, процессов или про-
цессов сложного нагружения с небольшим количеством точек упру-
гого расчета. Рассмотренные в работе алгоритмы коррекции 
погрешности позволяют существенно сократить отклонение от по-
верхности нагружения на протяжении всего процесса циклического 
деформирования. Наиболее действенным методом в смысле сокраще-
ния отклонения от поверхности оказался комбинированный алгоритм, 
основанный и на варьировании длины полученного в основном рас-
чете вектора приращения деформаций и оптимального выбора коэф-
фициента линеаризации. Результаты моделирования процессов про-
стого, пропорционального и непропорционального изотермического и 
неизотермического деформирования, приведенные в работе, демон-
стрируют удовлетворительное совпадение с данными экспериментов. 
Расхождения могут быть обусловлены рядом причин: недостаточным 
объемом экспериментальных данных, выбранных для определения па-
раметров пластичности и ползучести, относительной простотой соот-
ношений модели, не всегда высоким качеством данных эксперимента, 
приведенных в графическом виде в работах других исследователей. 
При этом надо отметить, что рассмотренные в работе на примере од-
ного из вариантов неизотермических моделей инвариантной теории 
пластичности алгоритмы численной реализации соотношений весьма 
универсальны ввиду универсальности соотношений инвариантной 
теории пластичности и могут быть применены и при реализации дру-
гих вариантов моделей типа течения. 
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The algorithm of the loading surface equation account during integration of constitutive 
equations system of invariant nonisothermal plasticity theory, based on returning of a rep-
resenting point to a loading surface equation on each step of calculation was offered. Ef-
ficiency of proposed algorithm in combination with different linearization schemas for 
number of proportional and nonproportional thermomechanical deformation trajectories 
was explored. Results of simulation of the processes of tubular nickel-based alloy IN738LC 
specimens testing under proportional (tension-compression, tension-compression with tor-
sion) and nonproportional («circle» and «diamond» with out-of-phase axis strain and tem-
perature changing) cyclic thermomechanical deformation trajectories in operating-tem-
perature range from 450 to 950°C. 
 
Keywords: plasticity, numerical modeling, error correction, nonelasticity model, complex 
deformation, nonisothermal conditions, samples testing. 
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