doi: 10.18698/2309-3684-2018-2-320
The article presents 3D-simulation system designed to analyze the characteristics of electron injection processes at diagnostics and modification of ferroelectrics with the scanning electron microscope techniques. The discrete stochastic model of electron trajectories was based on physical model of single interactions. The computational scheme was constructed with use of Monte Carlo simulation. The software application was suggested in order to perform the estimations of characteristics of electron injection effects in typical ferroelectrics. The characteristics specification of electron beam interaction area with irradiated target as well as the analytical expression for electron energy losses distribution were also descried with use of computing experiments data. The relationship of principal simulation parameters were indicated to control the field effects of the injected charges in ferroelectrics under electron irradiation.
[1] Applications of Monte Carlo method in science and engineering. Edited by S. Mordechai, InTech Publ., 2011. – 964 p.
[2] Krasnov I.K., Mozzhorina T.Yu., Dzhus D.V. Matematicheskoe modelirovanie i chislennye menody – Mathematical Modeling and Numerical Methods, 2017, no 3 (15), p. 71-82.
[3] Raster electron microscopy for nanotechnology. Methods and applica-tion. Ed. W. Zhu, J.L. Uanga – Moscow: BINOM. Laboratory of Knowledge, 2014. – 600 p.
[4] Akkerman A.F. Modeling the trajectories of charged particles in matter. Mos-cow: Energoatomizdat, 1991. – 200 p.
[5] Joy D.C. Monte-Carlo modeling for electron microscopy and microanalysis. – New York: Oxford University Press, 1995. – 216 p.
[6] Czyzewski Z., MacCallum D.O., Roming A., Joy D.C. Calculations of Mo scat-tering cross section. J. Appl. Phys., 1990, v. 68, p. 3066-3072.
[7] Zhang H. Monte Carlo study on electron emission from dielectric materials. Journal of Computational and Theoretical Transport, 2017, v. 46, p. 330-345.
[8] Kortov V.S., Zvonarev S.V. Matematicheskoe modelirovanie – Mathematical Modeling, 2008, v. 20, no. 6, p. 79-85.
[9] Zhuplev A.S., Prokhorov I.V., Yarovenko I.P. Dalnevostochny matematich-eskiy zhurnal – Far-Eastern Mathematical Journal, 2014, v. 14, no. 2, p. 217-230.
[10] Demers H., Poirier-Demers N., Couture A.R., Joly D., Guilmain M., de Jonge N., Drouin D. Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software. Scanning, 2011, v. 33, no 3, p. 135-181.
[11] pyPENELOPE [electronic resource], URL: http://pypenelope.source-forge.net/index.html (accessed date 17.01.2018).
[12] MC-SET simulation web site [electronic resource], URL: http://www.mc-set.com> (accessed date 17.01.2018).
[13] Cazaux J. About the mechanisms of charging in EPMA, SEM, and ESEM with their time evolution. Microscopy and Microanalysis, 2004, v. 10, no 6, p. 670-680.
[14] He J., Tang S.H., Qin Y.Q., Dong P., Zhang H.Z., Kang C.H., Sun W.X., Shen Z.X. Two-dimensional structures of ferroelectric domain in-version in LiNbO3 by direct electron beam lithography. J. Appl. Phys., 2003, v. 93, p. 9943-9947.
[15] Mateos L., Bausa L.E., Ramırez M.O. Two dimensional ferroelectric domain patterns in Yb3+ optically active LiNbO3 fabricated by direct electron beam writing. Applied Physics Letters, 2013, v. 102, p. 042910 (5).
[16] Mailis S., Sones C.L., Eason R.W. Micro-structuring and ferroelectric domain engineering of single crystal lithium niobate. In: Ferroelectric crystals for pho-tonic applications. Edited by Ferraro P., Grilli S., De Natale P., Berlin, Heidel-berg: Springer Series in Materials Science, 2014, v. 91, p. 3-19.
[17] Kokhanchik L.S., Irzhak D.V. FTT, 2010, v. 52, No. 2, p. 285-289.
[18] Nouiri A. Thermal effects behavior of materials under scanning elec-tron mi-croscopy. Monte Carlo and molecular dynamics hybrid model. Research and reviews: Journal of material science, 2014, v. 2, no 4, p. 1-9.
[19] Pavelchuk A.V., Maslovskaya A.G. Simulation of internal charge dis-tribution and spatial charge characteristics of ferroelectrics irradiated by focused elec-tron beam. In: Proc. SPIE 10176, 2016, p. 101760P (12).
[20] Fitting H.-J., Touzin M. Secondary electron emission and self-consistent charge transport in semi-insulting samples. J. Appl. Phys., 2011, v. 110, no 4, p. 044111 (12).
Павельчук А.В., Масловская А.Г. Численное стохастическое моделирование транспорта электронов в облученных сегнетоэлектрических материалах. Математическое моделирование и численные методы, 2018, № 2, с. 3–20.
Количество скачиваний: 704