Математическое моделирование
и численные методы

Государственная регистрация № ФС77-54326 от 29.05.2013. ISSN 2309-3684

MMCM

  • О журнале
    • Информация о журнале
    • Тематика публикуемых статей
    • Рубрикатор
  • Редколлегия
  • Требования к статьям
  • Порядок рассмотрения статей
  • Этика
  • Подписка и распространение
  • Контакты

Поиск

Archive

  • Архив номеров
  • Статьи по авторам

Меню

  • Помощь
  • Most popular articles
  • Подать статью (Простая форма)
  • Создать amsbib
  • Войти

Индексирование



  • 517.9:532:536 Нелинейные реакционно-диффузионные уравнения с запаздыванием и переменными коэффициентами переноса: решения с обобщенным и функциональным разделением переменных

    Полянин А. Д. (Институт проблем механики им. А.Ю. Ишлинского РАН), Журов А. И. (Cardiff University/Институт проблем механики им. А.Ю. Ишлинского РАН)


    doi: 10.18698/2309-3684-2015-4-337


    Описан ряд новых точных решений с простым, обобщенным и функциональным разделениями переменных одномерных нелинейных реакционно-диффузионных уравнений с запаздывающим аргументом и переменными коэффициентами переноса. Все представленные уравнения содержат одну, две или три произвольные функции одного аргумента. Решения с обобщенным разделением переменных находят в виде , где функции определяют в ходе анализа с использованием новой модификации метода функциональных связей. Некоторые из результатов обобщены на случай нелинейных реакционно-диффузионных уравнений с переменным запаздыванием. Также представлены точные решения более сложных трехмерных реакционно-диффузионных уравнений с запаздыванием. Большинство полученных решений содержат свободные параметры и могут быть использованы для решения некоторых задач, а также для тестирования приближенных аналитических и численных методов решения нелинейных уравнений в частных производных с запаздыванием.


    Полянин А. Д., Журов А. И. Нелинейные реакционно-диффузионные уравнения с запаздыванием и переменными коэффициентами переноса: решения с обобщенным и функциональным разделением переменных. Математическое моделирование и численные методы, 2015, №4 (8), c. 3-37





  • 22.251 Моделирование процесса взаимодействия ударной волны с цилиндрической оболочкой с учетом волны излучения

    Дубровин В. М. (МГТУ им.Н.Э.Баумана), Бутина Т. А. (МГТУ им.Н.Э.Баумана), Полякова Н. С. (МГТУ им.Н.Э.Баумана)


    doi: 10.18698/2309-3684-2015-4-3852


    Предложен метод расчета давления на поверхности упругой цилиндрической оболочки в период погружения и обтекания ее ударной волной. Для слабых ударных волн проведена сравнительная оценка точного решения с имеющимися приближенными решениями. Оценивалось влияние волны излучения вследствие деформации оболочки на величину давления на ее поверхности.


    Дубровин В. М., Бутина Т. А., Полякова Н. С. Моделирование процесса взаимодействия ударной волны с цилиндрической оболочкой с учетом волны излучения. Математическое моделирование и численные методы, 2015, №4 (8), c. 38-52





  • 536.2 Применение метода наименьших квадратов к задаче о переносе излучения в шаровой полости

    Зарубин В. С. (МГТУ им.Н.Э.Баумана), Пугачев О. В. (МГТУ им.Н.Э.Баумана), Савельева И. Ю. (МГТУ им.Н.Э.Баумана)


    doi: 10.18698/2309-3684-2015-4-5365


    Многие используемые в технике теплозащитные материалы имеют пористую структуру. При интенсивном тепловом воздействии возникает необходимость учитывать перенос тепловой энергии путем излучения в порах таких материалов. Построена математическая модель, описывающая теплообмен излучением в шаровой полости, форму которой можно рассматривать как среднюю
    статистическую по отношению к формам замкнутых пор в твердых телах. Для количественного анализа этой модели использован метод наименьших квадратов. Введен эквивалентный коэффициент теплопроводности условной сплошной среды, заполняющей пору, что позволяет рассматривать материал с пористой структурой как сплошное неоднородное твердое тело.


    Зарубин В. С., Пугачев О. В., Савельева И. Ю. Применение метода наименьших квадратов к задаче о переносе излучения в шаровой полости. Математическое моделирование и численные методы, 2015, №4 (8), c. 53-65





  • 629.1.028 Проверка адекватности математической модели движения многоосной колесной машины с податливой на кручение несущей системой методами экспериментальных исследований

    Жилейкин М. М. (МГТУ им.Н.Э.Баумана), Сарач Е. Б. (МГТУ им.Н.Э.Баумана)


    doi: 10.18698/2309-3684-2015-4-6674


    В рамках решения задачи активного управления упругими и демпфирующими элементами подвесок многоосных колесных машин (МКМ) остро стоит задача исследования свойств семейств подвесок, спроектированных как для различных ходов, так и для различных нагрузок. Методами экспериментальных исследований проведена проверка адекватности математической модели движения МКМ с учетом податливости несущей системы на кручение. Проведенное сравнение расчетных и экспериментальных данных показывает хорошую сходимость результатов.


    Жилейкин М. М., Сарач Е. Б. Проверка адекватности математической модели движения многоосной колесной машины с податливой на кручение несущей системой методами экспериментальных исследований. Математическое моделирование и численные методы, 2015, №4 (8), c. 66-74





  • 519.6:533.6 Применение метода RKDG для численного решения трехмерных уравнений газовой динамики на неструктурированных сетках

    Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Коряков М. Н. (МГТУ им.Н.Э.Баумана), Захаров А. А. (МГТУ им.Н.Э.Баумана)


    doi: 10.18698/2309-3684-2015-4-7591


    Рассмотрено применение конечно-элементного метода RKDG (Runge — Kutta discontinuous Galerkin) для численного интегрирования трехмерной системы уравнений идеального газа на неструктурированных сетках. Проведено решение двух тестовых задач с помощью представленного алгоритма. Для каждой задачи приведено сравнение с известными аналитическими решениями или же с табличными данными. Дана оценка погрешности решения.


    Димитриенко Ю. И., Коряков М. Н., Захаров А. А. Применение метода RKDG для численного решения трехмерных уравнений газовой динамики на неструктурированных сетках. Математическое моделирование и численные методы, 2015, №4 (8), c. 75-91





  • 519.632.4:532.516.5 О стационарном решении задачи течения несжимаемой вязкой жидкости при больших числах Рейнольдса

    Фомин А. А. (Кузбасский государственный университет им. Т.Ф. Горбачева), Фомина Л. Н. (Кемеровский государственный университет)


    doi: 10.18698/2309-3684-2015-4-92109


    Проанализированы вопросы сходимости итерационного процесса и достоверности решений, получаемых методом установления, на примере численного решения задачи стационарного течения несжимаемой вязкой жидкости в плоской квадратной каверне с подвижной верхней крышкой. Задача решается при числах Рейнольдса 15 000 < Re < 20 000 и шагах сеточного разбиения 1/128 > h > 1/2048. Показано, что не при всех соотношениях Re и h итерационный процесс установления
    решения сходится, а полученные стационарные решения достоверны хотя бы на качественном уровне. В системе координат (Re, 1/h) проведен качественный анализ результатов решения задачи с точки зрения сходимости итераций, достоверности получаемых решений и затрат машинного времени.


    Фомин А. А., Фомина Л. Н. О стационарном решении задачи течения несжимаемой вязкой жидкости при больших числах Рейнольдса. Математическое моделирование и численные методы, 2015, №4 (8), c. 92-109





  • 551.521 Моделирование двумерных полей атмосферных параметров в задачах лазерного дистанционного зондирования

    Иванов С. Е. (МГТУ им.Н.Э.Баумана), Городничев В. А. (МГТУ им.Н.Э.Баумана), Белов М. Л. (МГТУ им.Н.Э.Баумана), Михайловская М. Б. (МГТУ им.Н.Э.Баумана)


    doi: 10.18698/2309-3684-2015-4-110121


    Рассмотрена задача моделирования двумерных полей аэрозольного коэффициента обратного рассеяния атмосферы и скорости атмосферного ветра, актуальная при математическом моделировании работы систем лазерного дистанционного зондирования атмосферы и систем лазерной локации. Для ветрового корреляционного лидара проведен выбор оптимальных параметров математического моделирования с точки зрения времени моделирования и соответствия статистических характеристик моделируемых полей атмосферных параметров заданным статистическим характеристикам. Показано, что при малых размерах неоднородностей атмосферы более эффективно использовать метод формирующего фильтра, а при больших — спектральный метод.


    Иванов С. Е., Городничев В. А., Белов М. Л., Михайловская М. Б. Моделирование двумерных полей атмосферных параметров в задачах лазерного дистанционного зондирования. Математическое моделирование и численные методы, 2015, №4 (8), c. 110-121