doi: 10.18698/2309-3684-2015-4-92109
The research explored questions of the convergence of iterative processes and correctness of the solutions on the example of the problem about a steady-state flat square lid-driven cavity flow of incompressible viscous liquid. The problem is solved for Reynolds numbers of 15000 < Re < 20000 and steps of grid 1/128 > h > 1/2048. The findings of the research illustrate that not for all relationships between Re and h the convergence of iterative processes is stable and the resulting steady-state solutions are qualitatively correct. We conducted a qualitative analysis of the solutions of the problem in the coordinate system (Re, 1/h) in terms of the convergence of iterative process, solution correctness and the required computing time. According to the literature and the results of systematic calculations we conclude that the stability of the convergence of iterative process on the coarse grid depends on the degree of influence of the artificial viscosity and/or the condition number of the matrix of difference elliptical linear algebraic equations, and on the detailed grid it depends on the grid Reynolds number. At high Reynolds numbers steady calculations can be carried out either on very coarse grids, or on very detailed ones. The width of the zone of instability in terms of parameter 1/h increases with increasing Reynolds number. Since the coarse grid solution is incorrect, and the use of detailed grid leads to very high costs of computer time, the further increase of the Reynolds number in the problem is associated with increasing the order of approximation of the differential equations.
[1] Burggraf O.R. Analytical and numerical studies of the structure of steady separated flows. Journal of Fluid Mechanics, 1966, vol. 24, pp. 113−151.
[2] Ghia U., Ghia K.N., Shin C.T. High-Re solution for incompressible flow using the Navier–Stokes equations and a multigrid method. Journal of Computational Physics, 1982, vol. 48, pp. 387−411. Available at: http://dx.doi.org/10.1016/ 0021-9991(82)90058-4
[3] Bruneau C.-H., Jouron C. An efficient scheme for solving steady incompressible Navier Stokes equations. Journal of Computational Physics, 1990, vol. 89, pp. 389−413. Available at: http://dx.doi.org/10.1016/0021-9991(90)90149-U
[4] Barragy E., Carey G.F. Stream function-vorticity driven cavity solution using p finite elements. Computers & Fluids, 1997, vol. 26, no. 5, pp. 453−468. Available at: http://dx.doi.org/10.1016/S0045-7930(97)00004-2
[5] Marinova R.S., Christov C.I., Marinov T.T. A fully coupled solver for incompressible Navier – Stokes equations using operator splitting. Int. J. of Computational Fluid Dynamics, 2003, vol. 17, iss. 5, pp. 371−385. Available at: http://dx.doi.org/10.1080/1061856031000114300
[6] Bruneau C-H., Saad M. The 2D lid-driven cavity problem revisited. Computers & Fluids, 2006, vol. 35, pp. 326−348. Available at: http://dx.doi.org/10.1016/ j.compfluid.2004.12.004
[7] Kumar D.S., Kumar K.S., Kumar M.D. A fine grid solution for a lid-driven cavity flow using multigrid method. Engineering Applications of Computa tional Fluid Mechanics, 2009, vol. 3, no. 3, pp. 336−354. Available at: http://dx.doi.org/10.1080/19942060.2009.11015275
[8] Erturk E., Corke T.C., Gökçöl C. Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. for Numerical Methods in Fluids, 2005, vol. 48, pp. 747−774. Available at: http://dx.doi.org/10.1002/fld.953
[9] Cardoso N., Bicudo P. Time dependent simulation of the Driven Lid Cavity at High Reynolds Number, arXiv: D809.3098v2[physics.fly-dyn], 20 Nov 2009, pp. 1−20. Available at: http://arxiv.org/pdf/0809.3098.pdf
[10] Erturk E., Gökçöl C. Fourth-order compact formulation of Navier–Stokes equations and driven cavity flow at high Reynolds numbers. Int. J. for Numerical Methods in Fluids, 2006, no. 50, pp. 421−436. Available at: http://dx.doi.org/10.1002/fld.1061
[11] Wahba E.M. Steady flow simulation inside a driven cavity up to Reynolds number 35000. Computers & Fluids, 2012, vol. 66, pp. 85−97. Available at: http://dx.doi.org/10.1016/j.compfluid.2012.06.012
[12] Basarab M.A. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2014, no. 1, pp. 18–35.
[13] Fomin A.A., Fomina L.N. Kompyuternye issledovaniya i modelirovanie — Computer Research and Modeling, 2015, vol. 7, no. 1, pp. 35–50.
[14] Belotserkovskiy O.M., Gushchin V.A., Shchennikov V.V. Zhurnal vychislitelnoy matematiki i matematicheskoy fiziki — USSR Comp. Math. Math. Phys., 1975, vol. 15, no. 1, pp. 190–200. Available at: http://dx.doi.org/10.1016/0041-5553(75)90146-9
[15] Patankar S.V. Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Co, 1980, 197 p. [In Russ.: Patankar S. Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti. Moscow, Energoatomizdat Publ., 1984, 152 p.].
[16] Fomin A.A., Fomina L.N. Vestnik Tomskogo gosudarstvennogo universiteta, Matematika i mekhanika — Tomsk State University J. of Mathematics and Mechanics, 2011, no. 2 (14), pp. 45–54.
[17] Erturk E. Discussions on driven cavity flow. Int. J. for Numerical Methods in Fluids, 2009, vol. 60, pp. 275−294. Available at: http://dx.doi.org/10.1002/fld.1887
[18] Roache P.J. Computational Fluid Dynamics. Albuquerque, Hermosa Publs, 1976, 446 p. [In Russ.: Rouch P. Vychislitelnaya gidrodinamika. Moscow, Mir Publ., 1980, 616 p.].
Fomin A., Fomina L. On stationary solution of the problem of an incompressible viscous fluid at high Reynolds numbers. Маthematical Modeling and Coтputational Methods, 2015, №4 (8), pp. 92-109
Количество скачиваний: 796