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Проанализированы вопросы сходимости итерационного процесса и достоверно-
сти решений, получаемых методом установления, на примере численного решения 
задачи стационарного течения несжимаемой вязкой жидкости в плоской квад-
ратной каверне с подвижной верхней крышкой. Задача решается при числах Рей-
нольдса 15 000  Re  20 000 и шагах сеточного разбиения 1/128  h  1/2048. Пока-
зано, что не при всех соотношениях Re и h итерационный процесс установления 
решения сходится, а полученные стационарные решения достоверны хотя бы на 
качественном уровне. В системе координат (Re, 1/h) проведен качественный ана-
лиз результатов решения задачи с точки зрения сходимости итераций, достовер-
ности получаемых решений и затрат машинного времени. 

Ключевые слова: уравнения Навье — Стокса, течение в каверне, сходимость ите-
рационного процесса. 

Введение. Численному моделирова-
нию течения несжимаемой вязкой жид-
кости в плоской квадратной каверне с 
подвижной верхней крышкой посвящено 
множество работ [1–12] в силу того, что 
эта задача отражает основные особенно-
сти, присущие данному классу течений. 
Схема течения и обозначение возника-
ющих вихрей приведены на рис. 1. Об-
ширный исследовательский материал, 
накопленный по данной задаче, позво-
ляет авторам работ в режиме сравни-
тельного анализа демонстрировать но-
вые способы разностной аппроксимации 
исходных дифференциальных уравне-
ний, методы решения получаемых систем линейных алгебраических 
уравнений (СЛАУ), способы разрешения сингулярностей в верхних уг-
лах каверны и т. д. При этом исследователи периодически сталкиваются 
с проблемой сходимости итерационного процесса нахождения стацио-
нарного решения при тех или иных значениях параметра задачи — чис-
ла Рейнольдса Re, а также степени подробности сеточного разрешения 

 

Рис. 1. Схема течения и 
обозначение возможных 

вихрей 
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области расчета. Одно время — с первой половины 1990-х годов и до 
второй половины 2000-х — даже существовало убеждение, что при Re 
> 104 стационарного решения задачи в принципе не существует (см., 
например, [3–7]). Однако вышедшие затем работы [8–11] убедительно 
опровергли эту точку зрения. На сегодняшний день можно с уверенно-
стью говорить о том, что число Рейнольдса в задаче о стационарном 
течении несжимаемой вязкой жидкости в каверне поднято, как мини-
мум, до уровня 30 000…35 000 [10, 11]. 

Тем не менее вопросы сходимости итераций при построении 
стационарного решения задачи продолжают оставаться актуальны-
ми. Впервые они были, по-видимому, наглядно продемонстрирова-
ны в [1], где при Re = 400 на грубой сетке с шагом h = 0,1 возникали 
осцилляции итерационных приближений решения; на более по-
дробной сетке (h = 0,05) удавалось получить решение с заданным 
уровнем точности, а при дальнейшем наращивании сеточного раз-
решения до h = 0,033 процесс сходимости прерывался по исчерпа-
нии лимита итераций. Увеличение Re до 1 000 только обострило 
проблему: с заданной точностью решение не было построено ни для 
одной из используемых сеток за разумное по времени число итера-
ций. Сорок лет спустя вопрос сходимости итераций при построении 
стационарного решения по-прежнему остается актуальным, но уже 
при существенно других параметрах расчетов. Например, в работах 
[8, 9] для обеспечения сходимости итерационного процесса при ро-
сте числа Re авторам приходилось мельчить разностную сетку, по-
скольку, по их мнению, решающую роль в подавлении осцилляций 
приближений решения играет величина сеточного числа Рейнольдса 
Reh. Так, при Re  10 000 в этих работах использовался сеточный 
шаг h = 1/256; при 10 000  Re  15 000 — h = 1/512; а при 
Re > 15 000 — h = 1/600 и менее вплоть до h = 1/1024. Следует от-
метить, что авторам настоящей работы тоже приходилось использо-
вать данный прием в целях обеспечения решения. При этом платой 
за достижение сходимости итераций были чрезвычайно большие 
затраты машинного времени [13]. 

Из вышеприведенного следует, что при численном моделировании 
течения жидкости практически всегда возникает следующая проблема 
оптимизации расчетов: как при заданном параметре (параметрах) за-
дачи — в данном случае это число Re — применить минимально по-
дробную сетку и, соответственно, минимизировать расчетное время, 
получив при этом физически корректное решение. Понятно, что при 
этом используемый алгоритм нахождения решения должен обеспе-
чить сходимость итераций с заданной точностью. 

Настоящее исследование посвящено анализу возникающих при 
различных сочетаниях Re и h качественно различающихся ситуаций в 
процессе численного решения задачи о стационарном течении не-
сжимаемой вязкой жидкости в плоской каверне с подвижной верхней 
крышкой. 
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Постановка задачи и метод решения. Математическая поста-
новка задачи представляет собой систему безразмерных нестацио-
нарных уравнений Навье — Стокса 
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а также начальных u = v = 0 и краевых условий: на подвижной крыш-
ке каверны u = 1, v = 0 при y = 1, 0  x  1; на остальных стенках ка-
верны u = v = 0. В начальные моменты времени при 0  t  1 крышка 
по закону синуса плавно разгоняется от состояния покоя до макси-
мального значения 1. Здесь t — время; x, y — декартовы координаты; 
u, v — компоненты вектора скорости потока V вдоль координат x и y 
соответственно; p — давление; Re — число Рейнольдса, Re = UL/ν, 
где U — максимальная скорость движения крышки; L — размер сто-
роны квадратной каверны; ν — кинематический коэффициент вязко-
сти жидкости. 

Задача решается численно классическим трехшаговым методом 
расщепления [14] с учетом небольшой модификации [13]: 1) на первом 
шаге расщепления учитывается давление с предыдущего слоя по вре-
мени, а разностные схемы для u и v записываются в неявном виде;  
2) соответственно на втором шаге расщепления задача Неймана форму-
лируется для поправки давления ,р  которая равна разности давлений 
на текущем и предыдущем слоях по времени. Разностная аппроксима-
ция производится методом контрольного объема со вторым по про-
странству и первым по времени порядком аппроксимации с применени-
ем экспоненциального профиля, приближенного степенной зависимо-
стью пятой степени [15]. Во всех расчетах использована равномерная 
сетка. Решение задачи считается найденным (установившимся) при вы-
полнении условия 
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где n — номер слоя по времени; u, v — векторы сеточных функций 
компонент скорости u и v;  — шаг по времени;  — заданная точ-
ность установления решения. 
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Системы разностных эллиптических уравнений решают неявным 
итерационным полинейным рекуррентным методом, ускоренным в 
подпространствах Крылова [16]. В качестве критерия сходимости 
решения СЛАУ используют соотношение 

 1

I I

k k k
  Ф Ф Ф  (1) 

с учетом контроля относительного уменьшения первой нормы 
начальной невязки системы 0

R . Здесь Ф — один из векторов сеточ-
ных функций: u, v или ,р  ( р  — вектор сеточной функции поправки 

давления р ); k — номер итерации при решении СЛАУ; Ф — точ-
ность сходимости решения СЛАУ для переменной Ф. Выбор данного 
критерия сходимости связан с удобством контроля количества вер-
ных знаков решения системы линейных уравнений. Расчеты показа-
ли, что всегда при выполнении условия (1) выполнялось неравенство 

0

I I
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Шаг по времени определяют из соотношения  = C min (h, Re h2), 
где С — число Куранта; h — шаг сеточного разбиения области реше-
ния. В силу неявной формы записи разностных схем число Куранта 
принимали С >> 1, однако при определенных соотношениях Re и h из 
соображений устойчивости С понижали вплоть до 1. Путем много-
численных вычислительных экспериментов в диапазоне сеточных 
разбиений от 129129 до 20492049 и числа Рейнольдса 1 000   
 Re  20 000 было получено, что значения  = 10–5 с избытком хвата-
ет для надежного установления численного решения задачи (безотно-
сительно к его физической достоверности хотя бы на качественном 
уровне). Что касается значения Ф, то из соображений его взаимосвя-
зи через С, h и Re с точностью  [13] оно полагалось 10–7 при Ф = u 
или Ф = v и 10–8 при Ф = .р  

Все расчеты проведены на ПЭВМ Intel Core i5-750, 2,66 ГГц, 
RAM 12 Гбит.  

Примеры решения задачи при Re  15 000. В силу того что в 
[4] признаки потери устойчивости расчетного алгоритма имели место 
для чисел Рейнольдса в диапазоне 12 500 < Re  16 000, первоначаль-
ный расчет настоящего исследования был выполнен при Re = 15 000. 
На рис. 2 приведены линии тока течения, полученные для различных 
сеточных разбиений, причем последний фрагмент (рис. 2, г) взят из 
работы [9], в которой использована разностная аппроксимация чет-
вертого порядка по пространству. Видно, что варианты решения на 
рис. 2, б−г очень похожи между собой (изображения на рис. 2, в, г прак-
тически совпадают), что говорит о насыщении решения в диапазоне се-
ток от 513513 до 10251025 и его достоверности в силу совпадения 
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Рис. 2. Картина течения при Re = 15 000 для сеточных разбиений расчетной 
области:  

а — 257257; б — 513513; в — 10251025; г — 601601  

с решением из [9]. С другой стороны, картина течения на рис. 2, а 
принципиально отличается от остальных вариантов решения задачи 
вследствие наличия артефакта — небольшого пристенного вихря в 
нижней части правой стенки каверны. Отсюда следует естественный 
вывод: несмотря на сходимость итераций, существует ограничение 
снизу по степени подробности сеточного разрешения области, при 
достижении которого установившееся решение не может считаться 
правильным. 

Повышение числа Рейнольдса до Re = 20 000 (рис. 3) привело к 
следующим результатам: на грубой сетке 257257 (рис. 3, а) имеет 
место установление решения, которое, тем не менее, нельзя признать 
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Рис. 3. Картина течения при Re = 20 000 для сеточных разбиений расчетной 
области:  

а — 257257; б — 10251025; в — 17931793; г — 601601  

верным; на сетке 10251025 (рис 3, б) решение не установилось с 
требуемой точностью — имели место постоянные изменения пара-
метров течения без уменьшения значения DV, поэтому приведенные 
на данном фрагменте «линии тока» имеют условный смысл. Следует 
заметить, что изображение на рис. 3, б очень похоже на соответству-
ющие картины «течения» в работах [6, 7], демонстрирующих бифур-
кации Хопфа решения задачи в случаях отсутствия сходимости ите-
раций. Изображение на рис. 3, в: стационарное решение задачи, по-
лученное на подробной сетке 17931793 и совпадающее с соответ-
ствующим решением работы [9] (рис. 3, г). 

С точки зрения поведения динамических систем процесс уста-
новления решения представлен на рис. 4, на котором параметриче-
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ские кривые в координатах (lg DV, lg || р ||I) демонстрируют взаимо-
связь степени установления решения DV и первой нормы поправки 
давления || р ||I. При этом в качестве параметра выступает время t.  
 

 а б 

Рис. 4. Параметрические кривые установления решения при Re = 20 000  
в зависимости от сеточного разрешения расчетной области: 

 а — 10251025; б — 17931793 

В случае установления решения обе величины, DV и || р ||I, становятся 
заведомо малыми (рис. 4, б). В противном случае (отсутствие сходи-
мости итераций) их значения непрерывно и, вообще говоря, хаотично 
изменяются, оставаясь все это время ограниченными снизу некото-
рыми предельными значениями, не удовлетворяющими условию 
установления. На рис. 4, а хорошо видно, что за все время расчета 
варианта задачи на сетке 10251025 величина DV не опускается ниже 
стартового значения 5,20·10−3. Стрелками на рисунке показаны 
направления перемещения вдоль кривых по мере увеличения пара-
метра t. Из приведенных графиков и результатов других расчетов 
следует, что процесс установления решения при больших Re, как 
правило, сопряжен со стадией хаотического изменения параметров 
DV и || р ||I. В дальнейшем он либо остается на этой стадии навсегда, 
либо переходит в стадию монотонной сходимости итераций вплоть 
до достижения наперед заданной точности установления решения. 

Для понимания причин отсутствия сходимости итерационного 
процесса на сетке 10251025 и, наоборот, сходимости итераций на 
более мелкой сетке 17931793 следует обратиться к выводам работ 
[9, 17], согласно которым сходимость итерационного процесса 
напрямую связана с величиной сеточного числа Рейнольдса: чем оно 
меньше, тем больше вероятность того, что решение в конечном счете 
установится.  
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На рис. 5 приведены поля величины Reh = Re |V| h, соответству-
ющие картинам течения, приведенным на рис. 3, а−в. В качестве 
критического значения выбрана величина Reh = 2, поскольку ее пре-
вышение может приводить к так называемым пилообразным осцил-
ляциям решения, не совместимым с физически осмысленными ре-
зультатами расчетов [18]. На рис. 5, а область Reh > 2 занимает почти 
всю каверну и, тем не менее, итерации сходятся. Следовательно, 
здесь основную роль играют другие факторы, такие, например, как 
 

 

 

в 

 

 

 

 

 

Рис. 5. Поля сеточного числа Рей-
нольдса Reh для сеточных разбие- 
      ний расчетной области: 

а — 257257, max Reh = 78,2;  
б — 10251025, max Reh = 19,5;  
в — 17931793, max Reh = 11,2 

 
стабилизирующие влияние схемной вязкости (при Reh > 2 схема Па-
танкара схожа с противопотоковой [15]) и (или) понижающее число 
обусловленности матрицы СЛАУ из-за относительно небольшого ко-
личества уравнений — порядка 65 000. Что касается более подробных 
сеток (рис. 5, б, в), то тут уже превалирующую роль в смысле сходи-
мости итерационного процесса играет величина Reh. И хотя площадь 
областей Reh > 2 на этих фрагментах приблизительно одинакова, кон-
фигурация проходящих вблизи Reh = 2 изолиний, а также величины 
максимумов Reh и наличие областей возмущений решения в нижних 



А.А. Фомин, Л.Н. Фомина 

100 

углах каверны на фрагментах рис. 5, б объясняют, почему на сетке 
17931793 итерации сошлись, а на сетке 10251025 — нет. 

Качественный анализ результатов решения задачи. Приведен-
ные результаты расчетов говорят о том, что при различных сочетаниях 
Re и h процесс установления решения не всегда позволяет получить 
стационарное решение, а в случае успешной сходимости итераций са-
ми решения могут быть как физически достоверными, так и наоборот. 
Сюда же следует отнести вопрос принудительного ограничения вре-
мени расчета варианта, поскольку вычисления не могут длиться бес-
конечно: их продолжительность всегда ограничена, как правило, пре-
дельным количеством итераций или астрономическим временем ис-
полнения программы. Соответственно, из самых общих соображений в 
системе координат входных параметров расчетов (Re, 1/h) можно про-
вести линии, которые качественно разграничивают координатную 
плоскость на зоны, в которых реализуются или не реализуются следу-
ющие факторы: сходимость итераций, достоверность решения, огра-
ничение по итерациям. Такие линии представлены на рис. 6. Приведем 
обоснование поведения каждой из них на качественном уровне. 

Рис. 6. Принципиальная схема результативной области 0 и пере-
ходов между вариантами решений задачи, полученных различными  
                                          исследователями 

Линия AB — достоверность решения. Увеличение числа Рей-
нольдса приводит к уменьшению характерных размеров структурных 
элементов течения (например, толщины пограничного слоя вдоль 
стенок), что, в свою очередь, при фиксированном h приводит к 
огрублению картины течения. Следовательно, в целях обеспечения 
достоверности решения для бóльших значений Re требуется большее 
разрешение, иными словами, между Re и 1/h имеет место прямая 
пропорциональная зависимость. 
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Линия FE — ограничение по итерациям. Как показывает практика 
расчетов [1, 13], не только увеличение сеточного разрешения (умень-
шение h), но и увеличение числа Re приводит к резкому росту времени 
вычислительного процесса при прочих равных условиях (в первую 
очередь — при условиях точности сходимости решения). Поскольку 
должно существовать разумное ограничение такого времени, то связь 
между Re и 1/h через это ограничение должна носить обратно пропор-
циональный характер: чем больше значение Re задачи, тем менее по-
дробным должно быть сеточное разрешение, чтобы за разумное время 
вычислений построить решение, и наоборот. 

Линия BCE — сходимость итераций. Как упоминалось выше, в 
многочисленных публикациях 1990-х и начала 2000-х годов утвер-
ждается, что неограниченное увеличение числа Re в конечном счете 
приводит к прекращению сходимости итераций при построении ста-
ционарного решения задачи. Соответственно, отсутствие сходимости 
итерационного процесса или, наоборот, ее наличие можно объяснить 
двумя причинами. Приведем их. 

Линия BC — левая ветка. Увеличение разрешения приводит к уве-
личению размерности системы разностных уравнений, откуда следует 
увеличение числа обусловленности матрицы разностной СЛАУ, что,  
в свою очередь, увеличивает ошибку вектора решения системы алгеб-
раических уравнений. Как следствие, в результате накопления от ите-
рации к итерации ошибки вектора решения возникает потеря устойчи-
вости итерационного процесса, которая, в общем случае, не позволяет 
достичь установления решения всей задачи. Соответственно, между 
величинами Re и 1/h имеет место обратно пропорциональная зависи-
мость, поскольку увеличение одной из них для сохранения сходимости 
итераций необходимо компенсировать уменьшением другой. 

Линия CE — правая ветка. Согласно рекомендациям [9, 17], под-
твержденным авторскими расчетами, уменьшение сеточного Reh позво-
ляет добиться сходимости итерационного процесса построения стацио-
нарного решения задачи, откуда следует, что увеличение числа Re 
должно компенсироваться уменьшением сеточного шага h, т. е. между 
Re и 1/h имеет место прямая пропорциональная зависимость. 

В итоге часть координатной плоскости, ограниченная замкнутой 
линией ABCEF, образует так называемую результативную область 
0 — множество таких координатных пар (Re, 1/h), использование 
которых в качестве входных параметров позволяет получить хотя бы 
качественно правильное стационарное решение задачи. На этом же 
рисунке приведены переходы между вариантами решений по пара-
метрам Re и 1/h, построенные по материалам работ О.Р. Бургграфа 
(Burggraf) [1] и Э. Эртурка (Erturk) с соавторами [10, 17]. Обоснова-
ние второй линии устойчивости рассмотрим далее. 

Нетрудно видеть, что в случае справедливости приведенной конфи-
гурации области 0 должны существовать такие пары входных пара-
метров (Re, 1/h), которые обеспечили бы цепочку переходов между ва-
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риантами решений задачи, обозначенной на рис. 6 узлами а–ж. Такие 
параметры действительно были подобраны, и полученные на их основе 
картины течения представлены на рис. 7. При этом, строго говоря,  
 

Рис. 7. Картины течений, соответствующие входным параметрам задачи: 

а — Re =15 000, h = 1/256; б — Re =15 000, h = 1/320; в — Re =16 250, h = 1/320;  
г — Re =16 250, h = 1/352; д — Re =16 250, h = 1/512; е — Re =16 250, h = 1/1024 
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рис. 7, д не является решением с заданной точностью, поскольку в этом 
расчете итерации не сошлись, а минимально достигнутое значение DV 
составляло 1,4·10−3. Также понятно, что пару входных параметров 
(Re, 1/h), соответствующую узлу ж на рис. 6, для любого фиксирован-
ного Re нетрудно определить подходящим выбором малого сеточного 
шага h. Дело в том, что в основе установления решения лежит механизм 
поточечной сходимости [14], приводящий при увеличении количества 
расчетных узлов (уменьшении h) к катастрофическому нарастанию ко-
личества итерационных шагов по времени [13]. В итоге можно заклю-
чить, что построенная из общих качественных рассуждений схема обла-
сти 0 получила частное количественное подтверждение на примере 
вариантов решений задачи, приведенных на рис. 7. 

Для большего обоснования справедливости схемы на рис. 6 были 
проведены систематические расчеты в диапазоне чисел Рейнольдса 
15 000  Re  20 000 и сеточных шагов 1/128  h  1/2048. Результаты 
расчетов с точки зрения сходимости итераций, физической коррект-
ности решения и превышения допустимого количества итераций по 
времени представлены в таблице в виде чисел Куранта, использован-
ных при расчете различных вариантов. 

 
Результаты решений задачи в зависимости от числа Re  

и шага сеточного разбиения h 

Re 
1/h 

128 256 320 352 384 448 512 768 896 1 024 1 280 1 536 1792 2 048 

20 000 
3 

16 
3 
8 

3 
1 
3 

(1) (3) (8) (16) (16)
(16)
(32)

(16)
(32)

(32) 
(48) 
(64) 
(96) 

(32) 
64 

(96) 
80 

18 750 
3 

16 
3 
8 

3 1 (1) (3) (8) (16) (16)
(16)
(32)

(16)
32

(64)
64 64 80 

18 250 
3 

16 
3 
8 

3 (1) (1) (3) (8) (16) (16)
(16)
(32)
(64)

48 64 64 80 

17 500 
3 

16 
3 
8 

3 (1) 
(1)
(3) 

(3) 
(3)
(8)

(32)

(3)
(16)
(32)

(3)
(16)
(32)

32 32 
(16) 
32 
64 

64 80 

16 250 
3 

16 
3 
8 

3 1 
(1)
(2)
(3) 

(1)
(3) 

(3)
(8) 

(3)
16

(32)
32 32 32 48 48 72 

15 000 
3 

16 
3 
8 

1 
3 

1 3 4 8 32 32 32 32 32 48 70 

 

В левой части таблицы для диапазона шагов 1/128  h  1/352 
курсивом обозначены те расчеты (числа Куранта), в которых итера-
ционный процесс сошелся, но сами решения получились качественно 
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неверными, аналогичными тем, что приведены на рис. 7, а, в. В пра-
вой части таблицы для h = 1/2048 полужирным выделены результаты, 
каждый из которых был получен со значительными затратами ма-
шинного времени (более 250 ч), за счет чего они отнесены к случаю 
превышения ограничения по итерациям (для сравнения: при построе-
нии решения при Re = 15 000 и h = 1/2048 было затрачено приблизи-
тельно 180 ч). Понятно, что предельно допустимое количество ите-
раций (время вычислений) — величина субъективная, однако в дан-
ном случае речь идет не о конкретном значении этого параметра, а о 
его существовании в принципе, и для определенности такой предел 
выбран в размере 250 ч. 

Данные в скобках в средней части таблицы отвечают за расчеты, 
в процессе которых не удалось достигнуть стационарного решения. 
Для этих вариантов минимальные значения DV изменяются в преде-
лах от 0,33 (число Куранта С = 3 при Re = 17 500 и h = 1/896) до 
4,0·10−5 (число Куранта С = 48 при Re = 20 000 и h = 1/1536). В слу-
чае некоторых пар входных параметров (Re, 1/h) было выполнено не-
сколько расчетов при различных значениях числа Куранта, для того 
чтобы убедиться в отсутствии установления решения либо все-таки 
отыскать его, как это было сделано для следующих пар входных па-
раметров: Re = 16 250 и h = 1/768, Re = 18 750 и h = 1/1280, 
Re = 20 000 и h = 1/1792. Обычным начертанием в таблице представ-
лены варианты расчетов, в которых удалось получить стационарные 
физически корректные решения. 

Конечно, нельзя утверждать со стопроцентной уверенностью, что 
найденные разграничения между расчетами, в которых итерации со-
шлись и не сошлись, абсолютно верны, тем более что они зависят и от 
других факторов, таких как заданная точность сходимости и (или) 
точность и метод решения СЛАУ и т. д. Главное здесь другое — си-
стематические расчеты показывают, что при больших числах Рей-
нольдса по параметру 1/h между зонами стационарных физически 
корректных и некорректных решений существует зона, в которой 
решение не устанавливается в принципе. При этом конфигурация 
группы ячеек таблицы, соответствующих стационарным и достовер-
ным хотя бы на качественном уровне решениям, очень похожа на 
конфигурацию области 0 на рис. 6.  

Еще одной особенностью полученных результатов является пони-
жение числа Куранта от левой и правой границ таблицы к центру — 
прежде всего здесь следует обратить внимание на строку Re = 15 000. 
Любопытно, что уменьшение шага по времени не всегда приводит к 
сходимости итерационного процесса, о чем свидетельствуют, напри-
мер, результаты расчетов при Re = 16 250, h = 1/768 и другие. 

Еще одной интересной особенностью являются результаты для 
Re = 18 750 и Re = 20 000 при h = 1/352. Вопреки первоначальным 
обсуждениям схемы на рис. 6, итерационный процесс здесь сошел-
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ся, хотя картина течения получилась такой же физически недосто-
верной, как и решения в соседних слева ячейках таблицы. Объясне-
ние здесь кроется в следующем: первоначальные общие рассуждения 
не касались способа аппроксимации исходных дифференциальных 
уравнений. Однако известно, что в случае использования в конвек-
тивных членах противопотоковых разностей процесс установления 
ведет себя устойчиво, поскольку схемная вязкость гасит возмущения 
приближений решения, препятствующих его сходимости [18].  
С другой стороны, использование центрально-разностной схемы 
аппроксимации конвективных членов на грубых сетках (большие h) 
приводит к превышению Reh значения 2 и, следовательно, к воз-
можности возникновения пилообразных осцилляций, а значит, в 
данной ситуации — к возможному отсутствию сходимости итера-
ций. Поскольку применяемая в настоящей работе схема Патанкара 
при Reh < 2 схожа с центрально-разностной аппроксимацией, а при 
Reh > 2 — с противопотоковой, то существует вторая линия устой-
чивости, которая, в отличие от остальных линий схемы, «действует» 
только вверх. Это означает, что в расчетах при параметрах Re и 1/h 
выше этой линии итерации будут сходиться, в противном случае — 
в зависимости от других вышеперечисленных факторов. Понятно, 
что корреляция Re и 1/h при этом должна быть прямо пропорцио-
нальной, поскольку коэффициент схемной вязкости пропорциона-
лен сеточному шагу h, откуда следует, что чем меньше h, тем бóль-
шим значениям Re соответствует область преобладания схемной 
вязкости над физической. В подтверждение данного вывода для па-
раметров Re = 20 000, h = 1/352 выполнен расчет с использованием 
центрально-разностной аппроксимации конвективных членов и 
числа Куранта C = 1. В результате решение не установилось, а ми-
нимальное значение DV составило 0,66. 

Затраты машинного времени для вариантов, в которых было до-
стигнуто установление решения, значительно различаются по мере 
увеличения степени подробности сеточного разбиения области. Так, 
на сетке 129129 для установления решения потребовалось от 1,5 до 
10 мин, а на сетке 20492049 — от 180 до 468 ч в зависимости от 
значений чисел Куранта и Рейнольдса. При этом увеличение первого 
числа приводило к ускорению сходимости решения, а увеличение 
второго — к его замедлению. 

Заключение. Проанализированы результаты численного реше-
ния задачи стационарного течения несжимаемой вязкой жидкости в 
плоской каверне с подвижной верхней крышкой при больших числах 
Рейнольдса (15 000  Re  20 000). Показано, что в зависимости от 
соотношений входных параметров вычислительного алгоритма числа 
Re и сеточного шага h могут возникать различные ситуации как по 
сходимости итерационного процесса решения задачи, так и по физи-
ческой корректности получаемого решения. В системе координат 
(Re, 1/h) на основании самых общих рассуждений показано наличие так 
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называемой результативной области 0 — совокупности точек, коор-
динаты которых, взятые в качестве входных параметров, обеспечивают 
сходимость итерационного процесса установления решения и физиче-
скую корректность решения задачи хотя бы на качественном уровне. 

По опубликованным данным исследований и результатам прове-
денных систематических расчетов для больших чисел Рейнольдса в 
диапазоне сеточных шагов 1/128  h  1/2048 можно сделать следу-
ющие выводы: 

 сходимость итерационного процесса установления решения на 
грубых сетках зависит от степени влияния схемной вязкости и (или) 
числа обусловленности матриц разностных эллиптических СЛАУ, а на 
подробных сетках — от величины сеточного числа Рейнольдса Reh; 

 при больших числах Re сходимость итераций достигается либо 
на очень грубых сетках, либо на очень подробных, причем ширина 
зоны отсутствия сходимости итераций по параметру 1/h увеличива-
ется по мере увеличения числа Re; 

 поскольку на грубых сетках решение физически некорректно, а 
использование подробных сеток приводит к большим затратам ма-
шинного времени, дальнейший рост числа Рейнольдса в задаче со-
пряжен с повышением порядка аппроксимации исходных дифферен-
циальных уравнений. 
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The research explored questions of the convergence of iterative processes and correctness 
of the solutions on the example of the problem about a steady-state flat square lid-driven 
cavity flow of incompressible viscous liquid. The problem is solved for Reynolds numbers of 
15000  Re  20000 and steps of grid 1/128  h  1/2048. The findings of the research il-
lustrate that not for all relationships between Re and h the convergence of iterative pro-
cesses is stable and the resulting steady-state solutions are qualitatively correct. We con-
ducted a qualitative analysis of the solutions of the problem in the coordinate system 
(Re, 1/h) in terms of the convergence of iterative process, solution correctness and the re-
quired computing time. According to the literature and the results of systematic calcula-
tions we conclude that the stability of the convergence of iterative process on the coarse 
grid depends on the degree of influence of the artificial viscosity and/or the condition num-
ber of the matrix of difference elliptical linear algebraic equations, and on the detailed grid 
it depends on the grid Reynolds number. At high Reynolds numbers steady calculations can 
be carried out either on very coarse grids, or on very detailed ones. The width of the zone 
of instability in terms of parameter 1/h increases with increasing Reynolds number. Since 
the coarse grid solution is incorrect, and the use of detailed grid leads to very high costs of 
computer time, the further increase of the Reynolds number in the problem is associated 
with increasing the order of approximation of the differential equations. 

Keywords: Navier–Stokes equations, a lid-driven cavity flow, a convergence of iterative 
process. 
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