T. S. Aleroev (Moscow State University of Civil Engineering) :


Articles:

517.581, 517.954 Решение первой краевой задачи для неоднородного дробного дифференциального уравнения

Zakharov I. I. (Moscow State University of Civil Engineering), Aleroev T. S. (Moscow State University of Civil Engineering)


doi: 10.18698/2309-3684-2024-2-100111


This paper is devoted to an approximate method for solving the first boundary value problem for the inhomogeneous fractional-differential advection-diffusion (dispersion) equation. The aim of the work is to construct, and realize an effective approximate method for solving physical and mathematical problems. The boundary value problem is studied for the two-dimensional case. The problems of finding eigenvalues and constructing surfaces of solutions of the first boundary value problem for the inhomogeneous differential equation are considered. The method of estimating the accuracy of the approximate solution is shown. An algorithm for finding an approximate solution based on the analytical method of separation of variables (Fourier method) is described. The exact results of calculations, both numerical and graphical, are given for specific examples.


Захаров И.И., Алероев Т.С. Решение первой краевой задачи для неоднородного дробного дифференциального уравнения. Математическое моделирование и численные методы, 2024, № 2, с. 100-111.