doi: 10.18698/2309-3684-2024-1-1837
A comparative analysis of the fatigue strength of hot-rolled and SLM materials was performed based on data from high-frequency cyclic tests for corset specimens made of aluminum alloy D16T and SLM alloy AlSi10Mg on piezoelectric equipment. The relatively low cyclic strength of SLM materials is shown, which is associated with their complex microstructure and is influenced by the laser scanning strategy, laser beam parameters, energy, heat transfer from the melting zone, and environmental parameters in the chamber. Mathematical modeling of the process of fatigue failure of the specified specimens was carried out for various amplitudes and mean stresses in the cycle using a multi-mode model of cyclic damage and a numerical method for calculating the kinetics of damage under high-frequency cyclic loading. The proposed model and calculation method make it possible to quickly and efficiently fatigue curves constructing for various cyclic loading modes and cycle asymmetry coefficients. It is enough to know the base points of the bi-modal fatigue curve for the reverse cycle to implement this computational procedure.
Никитин А.Д., Стратула Б.А. Моделирование циклической повреждаемости и усталостной прочности при высокочастотном нагружении 3Д-напечатанных образцов из алюминиевого сплава. Математическое моделирование и численные методы, 2024, № 1, с. 18–37.