doi: 10.18698/2309-3684-2021-1-4965
Разработан алгоритм обработки данных на основе вейвлет–анализа, позволяющий автоматизировать процесс частотно-временного анализа переходных процессов, полученных при статистическом моделировании движения БПЛА для большого числа случайно реализовавшихся наборов допусков. Статистическое моделирование движения БПЛА представляет собой основной инструмент для анализа и отработки функционирования разрабатываемых алгоритмов управления с учётом возможных разбросов характеристик БПЛА и параметров среды. Исходя из качества полученных при статистическом моделировании переходных процессов, определяется приемлемость выбранных параметров алгоритмов управления в части обеспечения устойчивого полёта БПЛА в заданном диапазоне допустимых траекторий с учётом допусков. Наибольшую трудность в этом случае представляет автоматизация частотно-временного анализа полученных переходных процессов, так как стандартные диагностики не позволяют выявлять критические варианты сочетания допусков, при которых в соответствующих им переходных процессах на исследуемых участках траектории присутствуют спектральные компоненты с превышением заданных значений по частоте, амплитуде и длительности. Для решения этой задачи в разработанном алгоритме используются вейвлетное и вейвлет–пакетное преобразования одномерных сигналов, которые как раз и относятся к типу частотно-временных преобразований сигналов, с целью получения и дальнейшего анализа частотно-временных представлений переходных процессов с заданными параметрами. Приведён пример использования разработанного алгоритма для оценки параметров спектральных компонент, таких как длительность, максимальное и среднее значение амплитуды, значение частоты в окрестности точки с максимальным значением амплитуды, требуемых для определения качества полученных при моделировании переходных процессов.
Точилова О.Л., Колготин А.В. Алгоритм автоматизации частотно–временного анализа переходных процессов, полученных при моделировании движения БПЛА. Математическое моделирование и численные методы, 2021, № 1, с. 49–65.