004.942 Automation algorithm for time-frequency analysis of transients obtained by UAV motion modeling

Tochilova O. L. (JSC MIC NPO Mashinostroyenia), Kolgotin A. V. (JSC MIC NPO Mashinostroyenia)

UNMANNED AERIAL VEHICLE, STATISTICAL MODELING, DATA PROCESSING, TRANSIENT, TIME–FREQUENCY ANALYSIS, WAVELET ANALYSIS, WAVELET TRANSFORM, WAVELET–PACKET TRANSFORM, FAST WAVELET TRANSFORM


doi: 10.18698/2309-3684-2021-1-4965


A wavelet based data processing algorithm providing automation of the process of time–frequency analysis of transients obtained by statistical UAV motion modeling for a large number of randomly realized sets of tolerances has been developed. Statistical UAV motion modeling is the main tool for analyzing and checking out the functioning of the developed control algorithms according to possible scatter of UAV characteristics and environmental parameters. Based on the quality of the transients obtained in the statistical modeling, acceptability of the selected control algorithm parameters in terms of ensuring a stable UAV flight in a given range of permissible trajectories according to the tolerances is determined. The greatest difficulty in this case is automation of the time-frequency analysis of the obtained transients, since standard diagnoses do not allow identifying critical variants of the tolerance combinations that have spectral components in the transients relevant to the studied parts of the trajectory exceeding the specified values of frequency, amplitude and duration. To solve this problem, the developed algorithm uses wavelet and wavelet–packet transforms of one-dimensional signals, which are precisely the type of time– frequency transforms of the signals, in order to obtain and then analyze the time–frequency representations of the transients with specified parameters. An example of using the developed algorithm to estimate the parameters of spectral components, such as duration, maximum and average amplitude value, frequency in the neighborhood of the point with the maximum amplitude value, required to determine the quality of the transients obtained by the modeling is given.


Fletcher K. Vychislitel'nye metody v dinamike zhidkostej. T. 2. Metody rascheta razlichnyh techenij [Computational methods in fluid dynamics. Vol.2. Methods for calculating different flows]. Moscow, Mir Publ., 1991, 552 p.
Tochilova O.L. Wavelet analysis of missile stability. Electronic journal «Trudy MAI», 2016, no.91, pp.1–25.
Tochilova O.L. Metodika obrabotki dannyh statisticheskogo modelirovaniya na osnove vejvlet–analiza. [Methods of statistical modeling data processing based on wavelet analysis]. Raketnyye kompleksy i raketno-kosmicheskiye sistemy — proyektirovaniye, eksperimentalnaya otrabotka, letnyye ispytaniya, ekspluatatsiya. Trudy sektsii 22 im.akad. V.N. Chelomeya XXXIX Akademicheskikh chteniy po kosmonavtike [Rocket and space-rocket systems — designing, experimental tests, flight tests, exploitation. Proceedings of the 22nd section named after acad. V.N. Chelomei of the XXXIX Academic Space Technology Readings], Reutov, 2015, pp.202–217.
Plavnik G.G., Loshkarev A.N., Tochilova O.L. Using techniques of statistical modeling data processing based on wavelet analysis to adjust uav stabilization algorithms parameters. Engineering Journal: Science and Innovation, 2016, no.9. DOI: 10.18698/2308-6033-2016-9-1528
Novikov L.V. Osnovy vejvlet–analiza signalov. Uchebnoe posobie [Fundamentals of wavelet analysis of signals. Study guide]. Saint Petersburg, MODUS+ Publ., 1999, 152 p.
Blatter K. Vejvlet–analiz. Osnovy teorii [Wavelet analysis. Fundamentals of theory]. Moscow, Tekhnosfera Publ., 2006, 272 p.
Malla S. Vejvlety v obrabotke signalov [Wavelets in signal processing]. Moscow, Mir Publ., 2005, 672 p.
Shtark G. G. Primenenie vejvletov dlya COS [Application of wavelets for DSP]. Moscow, Tekhnosfera Publ., 2007, 192 p.
Ngui W.K., Leong M.S., Hee L.M., Abdelrhman A.M. Wavelet analysis: Mother wavelet selection methods. Applied Mechanics and Materials, 2013, vol.393, pp.953–958.
Polikar R. The engineer’s ultimate guide to wavelet analysis. Rowan University, College of Engineering, retrieved June, 2006.
Yakovlev A.N. Vvedenie v vejvlet–preobrazovaniya [Introduction to wavelet transformations]. Novosibirsk, NSTU Publ., 2003, 104 p.
Astaf'eva N.M. Wavelet analysis: basic theory and some applications. Physics–Uspekhi, 1996, vol.39, no.11, pp.1085–1108.
Petukhov A.P. Vvedenie v teoriyu bazisov vspleskov [Introduction to the theory of bases of bursts]. St. Petersburg, SPbSTU Publ., 1999, 132 p.
Dobeshi I. Desyat' lekcij po vejvletam [Ten lectures on wavelets]. Izhevsk, SIC "Regular and dynamic dynamics", 2001, 464 p.
Smolentsev N.K. Osnovy teorii vejvletov. Vejvlety v MATLAB [Fundamentals of the theory of wavelets. Wavelets in MATLAB]. Moscow, DMK Press, 2008, 448 p.


Точилова О.Л., Колготин А.В. Алгоритм автоматизации частотно–временного анализа переходных процессов, полученных при моделировании движения БПЛА. Математическое моделирование и численные методы, 2021, № 1, с. 49–65.



Download article

Количество скачиваний: 24