doi: 10.18698/2309-3684-2018-2-7095
Метод конечных элементов используется для моделирования неизотермического потока неньютоновских вязких жидкостей в сложных геометриях. Рассмотрена модель Carreau-Yasuda неньютоновской жидкости, в которой зависимость коэффициента вязкости от второго инварианта тензора скоростей деформации имеет степенной вид. Получена вариационная формулировка задачи движения неньютоновской жидкости для плоского случая. Для решения системы уравнений Навье-Стокса применяется итерационный алгоритм Ньютона-Рафсона, а для решения уравнения энергии использован итерационный алгоритм Пикара. Рассмотрена задача о движении полимерной массы в пресс-форме сложного переменного сечения при наличии неравномерного температурного поля. С помощью конечно-элементного моделирования проведен численный анализ влияния различных параметров на движение жидкости и теплопередачу полимерного материала при различных значениях внешнего давления. Показано, что характер движения неньютоновской жидкости существенно зависит от реологических свойств жидкости и характеристик геометрической формы, что необходимо учитывать при технологических процессах переработки пластмасс.
Димитриенко Ю.И., Шугуан Ли Конечно-элементное моделирование неизотермического стационарного течения неньютоновской жидкости в сложных областях. Математическое моделирование и численные методы, 2018, № 2, с. 70–95.
doi: 10.18698/2309-3684-2019-3-1938
Исследована математическая модель многомасштабного процесса фильтрации неньютоновской жидкости в трехмерных периодических пористых средах методом асимптотической гомогенизации. Сформулированы так называемая локальная задача фильтрации в отдельной поре и локальное неньютоновско-вязкое определяющее соотношение. Разработан итерационный метод конечных элементов для решения локальной задачи в 1/8 ячейке периодичности, основанный на физической симметрии структуры. Рассчитаны распределение компонент скорости фильтрации, микрополей давления и неньютоновской вязкости в отдельной поре. На основе закона Дарси проанализирован нелинейный закон фильтрации, показано влияние реологических свойств жидкости на проницаемость.
Димитриенко Ю.И., Шугуан Ли. Моделирование проницаемости неньютоновских жидкостей в трехмерных композитных структурах на основе метода асимптотической гомогенизации. Математическое моделирование и численные методы. 2019. № 3.c.19–38.