doi: 10.18698/2309-3684-2024-3-140167
Рассматриваются нелинейные уравнения переноса с постоянным запаздыванием. Во введении дается краткий обзор публикаций, в которых исследуются математические модели переноса с запаздыванием и разрабатываются численные методы решения соответствующих задач. В основных разделах статьи описывается более сорока уравнений переноса с постоянным запаздыванием и различными коэффициентами переноса, которые допускают точные аналитические решения. Кинетические функции всех рассматриваемых уравнений содержат свободные параметры или произвольные функции. Получены решения с аддитивным, мультипликативным, обобщенным и функциональным разделением переменных, а также решения типа бегущей волны и автомодельные решения. Многие решения выражаются через элементарные функции. Для некоторых типов уравнений сформулированы теоремы о «размножении» решений. Описанные уравнения и их решения могут быть использованы для оценки точности численных методов интегрирования соответствующих нелинейных задач переноса с запаздыванием.
[1] Singh P., Sharma K.K. Numerical solution of first-order hyperbolic partial differential-difference equation with shift. Numerical Methods for Partial Differential Equations, 2010, vol. 26, pp. 107–116.
[2] Singh P., Sharma K.K. Finite difference approximations for the first-order hyperbolic partial differential equation with point-wise delay. arXiv.org, 2022. DOI: https://doi.org/10.48550/arXiv.1012.0974
[3] Karthick S., Mahendran R., Subburayan V. Method of lines and Runge–Kutta method for solving delayed one dimensional transport equation. Journal of Mathematics and Computer Science, 2023, vol. 28, pp. 270–280.
[4] Sharma K.K., Singh P. Hyperbolic partial differential-difference equation in the mathematical modeling of neuronal firing and its numerical solution. Applied Mathematics and Computation, 2008, vol. 201, pp. 229–238.
[5] Zaidi A.A., Van Brunt B., Wake G.C. Solutions to an advanced functional partial differential equation of the pantograph type. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, vol. 471, art. no. 20140947. DOI: http://doi.org/10.1098/rspa.2014.0947
[6] Rey A.D., Mackey M.C. Bifurcations and traveling waves in a delayed partial differential equation. Chaos, 1992, vol. 2, p. 231–244.
[7] Mackey M.C., Rudnicki R. Global stability in a delayed partial differential equation describing cellular replication. Journal of Mathematical Biology, 1994, vol. 33, pp. 89–109.
[8] Dyson J., Villella-Bressan R., Webb G.F. A semilinear transport equation with delays. International Journal of Mathematics and Mathematical Sciences, 2003, vol. 32, pp. 2011–2026.
[9] Mackey M.C., Rudnicki R. A new criterion for the global stability of simultaneous cell replication and maturation processes. Journal of Mathematical Biology, 1999, vol. 38, pp. 195–219.
[10] Rhee H.-K., Aris R., Amundson N.R. First-order partial differential equations, Vol. 1. Theory and application of single equations. Mineola, New York, Dover Publications, 1986, 543 p.
[11] Rhee H.-K., Aris R., Amundson N. R. First-order partial differential equations, Vol. 2. Theory and application of hyperbolic systems of quasilinear equations. Mineola, New York, Dover Publications, 1989, 544 p.
[12] Полянин А.Д., Сорокин В.Г., Журов А.И. Дифференциальные уравнения с запаздыванием: Свойства, методы, решения и модели. Москва, ИПМех РАН, 2022, 463 с.
[13] Kamont Z., Przadka K. Difference methods for first order partial differential-functional equations with initial-boundary conditions. USSR Computational Mathematics and Mathematical Physics, 1991, vol. 31, pp. 1476–1488.
[14] Sampath K., Veerasamy S., Agarwal R.P. Stable difference schemes with interpolation for delayed one-dimensional transport equation. Symmetry, 2022, 14 (5), art. no. 1046. DOI: https://doi.org/10.3390/sym14051046
[15] Solodushkin S.I., Yumanova I.F., De Staelen R.H. First order partial differential equations with time delay and retardation of a state variable. Journal of Computational and Applied Mathematics, 2015, vol. 289, pp. 322–330.
[16] Пименов В.Г. Разностные методы решения уравнений в частных производных с наследственностью. Екатеринбург, Изд-во Уральского университета, 2014, 134 с.
[17] Meleshko S.V., Moyo S. On the complete group classification of the reaction–diffusion equation with a delay. Journal of Mathematical Analysis and Applications, 2008, vol. 338, pp. 448–466. DOI: 10.1016/j.jmaa.2007.04.016
[18] Long F.-S., Meleshko S.V. On the complete group classification of the one-dimensional nonlinear Klein—Gordon equation with a delay. Mathematical Methods in the Applied Sciences, 2016, vol. 39, no. 12, pp. 3255–3270. DOI: 10.1002/mma.3769
[19] Lobo J.Z., Valaulikar Y.S. Group analysis of the one dimensional wave equation with delay. Applied Mathematics and Computation, 2020, vol. 378, art. no. 125193. DOI: 10.1016/j.amc.2020.125193
[20] Polyanin A.D., Zhurov A.I. Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations. Communications in Nonlinear Science and Numerical Simulation, 2014, vol. 19, pp. 417–430. DOI: https://doi.org/10.1016/j.cnsns.2013.07.017
[21] Polyanin A.D., Zhurov A.I. The functional constraints method: Application to non-linear delay reaction-diffusion equations with varying transfer coefficients. International Journal of Non-Linear Mechanics, 2014, vol. 6, pp. 267–277. DOI: 10.1016/j.ijnonlinmec.2014.09.008
[22] Полянин А.Д., Сорокин В.Г., Вязьмин А.В. Нелинейные реакционно-диффузионные уравнения гиперболического типа с запаздыванием: точные решения, глобальная неустойчивость. Математическое моделирование и численные методы, 2014, № 4, с. 53–73.
[23] Полянин А.Д., Сорокин В.Г. Точные решения нелинейных уравнений в частных производных с переменным запаздыванием типа пантографа. Вестник НИЯУ «МИФИ», 2020, т. 9, № 4, с. 315–328.
[24] Polyanin A.D., Zhurov A.I. Exact separable solutions of delay reaction–diffusion equations and other nonlinear partial functional-differential equations. Communications in Nonlinear Science and Numerical Simulation, 2014, vol. 19, no. 3, pp. 409–416. DOI: 10.1016/j.cnsns.2013.07.019
[25] Polyanin A.D., Zhurov A.I. Generalized and functional separable solutions to nonlinear delay Klein—Gordon equations. Communications in Nonlinear Science and Numerical Simulation, 2014, vol. 19, no. 8, pp. 2676–2689. DOI: 10.1016/j.cnsns.2013.12.021
[26] Polyanin A.D., Zhurov A.I. Nonlinear delay reaction-diffusion equations with varying transfer coefficients: Exact methods and new solutions. Applied Mathematics Letters, 2014, vol. 37, pp. 43–48. DOI: https://doi.org/10.1016/j.aml.2014.05.010
[27] Polyanin A.D., Zhurov A.I. New generalized and functional separable solutions to nonlinear delay reaction–diffusion equations. International Journal of Non-Linear Mechanics, 2014, vol. 59, pp. 16–22. DOI: https://doi.org/10.1016/j.ijnonlinmec.2013.10.008
[28] Полянин А.Д., Сорокин В.Г. Построение точных решений нелинейных уравнений математической физики с запаздыванием с помощью решений более простых уравнений без запаздывания. Вестник НИЯУ «МИФИ», 2020, т. 9, № 2, с. 115–128.
[29] Polyanin A.D., Sorokin V.G. Nonlinear pantograph-type diffusion PDEs: Exact solutions and the principle of analogy. Mathematics, 2021, vol. 9, art. no. 511. DOI: https://doi.org/10.3390/math9050511
[30] Polyanin A.D., Sorokin V.G. A method for constructing exact solutions of nonlinear delay PDEs. Journal of Mathematical Analysis and Applications, 2021, vol. 494, art. no. 124619. DOI: 10.1016/j.jmaa.2020.124619
[31] Polyanin A.D., Sorokin V.G. Construction of exact solutions to nonlinear PDEs with delay using solutions of simpler PDEs without delay. Communications in Nonlinear Science and Numerical Simulation, 2021, vol. 95, art. no. 105634. DOI: 10.1016/j.cnsns.2020.105634
[32] Polyanin A.D., Sorokin V.G. Reductions and exact solutions of nonlinear wave-type PDEs with proportional and more complex delays. Mathematics, 2023, vol. 11, art. no. 516. DOI: https://doi.org/10.3390/math11030516
[33] Polyanin A.D., Sorokin V.G. Exact solutions of reaction-diffusion PDEs with anisotropic time delay. Mathematics, 2023, vol. 11, art. no. 3111. DOI: https://doi.org/10.3390/math11143111
[34] Tanthanuch J. Symmetry analysis of the nonhomogeneous inviscid Burgers equation with delay. Communications in Nonlinear Science and Numerical Simulation, 2012, vol. 17, pp. 4978–4987. DOI: 10.1016/j.cnsns.2012.05.031
[35] Polyanin A.D., Zaitsev V.F. Handbook of Nonlinear Partial Differential Equations, 2nd ed. Boca Raton, CRC Press, 2012, 1912 p.
Сорокин В.Г. Аналитические решения нелинейных уравнений с запаздыванием, используемых при математическом моделировании процессов переноса. Математическое моделирование и численные методы, 2024, № 3, с. 140–167.
Работа выполнена по теме государственного задания (№ госрегистрации 124012500440-9).
Количество скачиваний: 51