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Рассматриваются нелинейные уравнения переноса с постоянным запаздыванием. 

Во введении дается краткий обзор публикаций, в которых исследуются математи-

ческие модели переноса с запаздыванием и разрабатываются численные методы 

решения соответствующих задач. В основных разделах статьи описывается более 

сорока уравнений переноса с постоянным запаздыванием и различными коэффици-

ентами переноса, которые допускают точные аналитические решения. Кинетиче-

ские функции всех рассматриваемых уравнений содержат свободные параметры 

или произвольные функции. Получены решения с аддитивным, мультипликативным, 

обобщенным и функциональным разделением переменных, а также решения типа 

бегущей волны и автомодельные решения. Многие решения выражаются через эле-

ментарные функции. Для некоторых типов уравнений сформулированы теоремы о 

«размножении» решений. Описанные уравнения и их решения могут быть использо-

ваны для оценки точности численных методов интегрирования соответствующих 

нелинейных задач переноса с запаздыванием.  
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Введение. Уравнения переноса с запаздыванием применяются для 

описания конвективного переноса некоторой субстанции, когда рас-

сматриваемый процесс, явление или система обладают свойством по-

следействия, то есть зависимости текущего состояния от значений ис-

комых величин в некоторый прошлый момент времени. Простейшее 

уравнение переноса с постоянным запаздыванием имеет вид 

 = ( , ), = ( , ),t xu au f u w w u x t     (1) 

где = ( , )u u x t  — искомая функция, = ( , )w w x t  — функция с запазды-

ванием, ( , )f u w  — кинетическая функция, > 0a  — коэффициент пе-

реноса, имеющий физический смысл скорости, > 0  — постоянное 

запаздывание. 

Замечание 1. В литературе часто можно встретить уравнения пе-

реноса с запаздыванием по x  (см., например, [1-3]): 

 = ( , ), = ( , ).t xu au f u w w u x t    (2) 

Так как уравнения (1) и (2) симметричны относительно аргумен-
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тов x  и t  (c точностью до переобозначения константы a  и кинетиче-

ской функции f ), в следующих разделах для простоты и определен-

ности рассматриваются только уравнения вида (1) с запаздыванием               

по t . 

Помимо уравнений переноса с одним постоянным запаздыванием 
(1), в литературе также встречаются уравнения с несколькими посто-
янными запаздываниями, с пропорциональным запаздыванием, одно-
временно с пропорциональным запаздыванием по одной переменной 
и пропорциональным запаздыванием по другой переменной, и др. Рас-
смотрим далее некоторые примеры уравнений переноса с такими за-
паздываниями, которые применяются в биологии и медицине. 

В [4] с помощью линейного уравнения переноса с двумя запазды-

ваниями по x  (формально, с запаздыванием и с опережением) описы-
вается процесс возбуждения нейронов. Рассматриваемое уравнение 
имеет вид:  

 
1 2( , ) = ( , )( ) ( , )( ),t xu a x t u b x t w u c x t w u      (3) 

где = ( , )u u x t  — вероятность того, что в момент времени t  деполяри-

зация мембраны нейрона меньше ;x  
1 1= ( , ),w u x t  

2 2= ( , );w u x t  

( , ),a x t  ( , ),b x t  ( , )c x t  — достаточно гладкие функции своих аргумен-

тов. Положительные постоянные 
1  и 

2  позволяют учесть увеличение 

или уменьшение вероятности деполяризации нейрона в случае, соот-
ветственно, возбуждающего или тормозного импульса. Статья [4] по-
священа разработке разностной схемы для решения соответствующей 
начально-краевой задачи, анализу ее сходимости и устойчивости. 

Линейное уравнение с пропорциональным запаздыванием по x  
рассматривается в [5] для описания роста и деления клеток, структу-
рированных по размеру:  

 2= , = ( , ),t xu au p bw bu u w u px t     

где = ( , )u u x t  — распределение плотности клеток размером x  в мо-

мент времени t . Данное уравнение моделирует динамику популяции 

клеток, растущих со скоростью 0a   и делящихся со скоростью > 0b  

на > 1p  дочерних клеток размером /x p  (обычно 2p  ). Предпола-

гается также, что клетки гибнут со скоростью 0  . Путем сведения 

рассматриваемой начально-краевой задачи к последовательности бо-
лее простых задач Коши в [5] получено аналитическое решение 
начально-краевой задачи для произвольных начальных данных. 

В [6] рассматривается модель популяции клеток с одновременным 
учетом пролиферации и созревания, которая основана на нелинейном 
уравнении переноса с постоянным запаздыванием по времени и про-

порциональным по x :  
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 ( ) = (1 ) , = ( , ),t xu a x u cw w bu w u px t       (4) 

где = ( , )u u x t  — плотность пролиферирующих клеток зрелости x  в 

момент времени t , ( ) > 0a x  — скорость созревания (обычно ( ) = ,a x rx  

> 0r  — некоторая константа), > 0b  и > 0c  — некоторые константы, 

> 0  — время запаздывания, > 0p  — коэффициент пропорциональ-

ности. Переменная x  называется «переменной созревания» (от англ. 

"maturation variable") и отвечает за уровень зрелости клетки. В данной 

модели учитывается, что динамика текущей популяции клеток зависит 

как от популяции в некоторый момент времени в прошлом, так и от 

популяции клеток другого уровня зрелости. В [6] изучается существо-

вание и локальная устойчивость решений различного рода для различ-

ных начальных данных и значений параметров уравнения. Похожие 

модели рассматриваются также в [7, 8]. Более сложное нелинейное 

уравнение с произвольным аргументом по x  и постоянным запазды-

ванием по времени:  

 ( ) = ( , , ), = ( ( ), ),t xu a x u f t u w w u x t     

где 0 ( ) <x x , изучается в [9]. 

Замечание 2. Модели, основанные на одиночных уравнениях пе-

реноса без запаздывания, рассматриваются в [10], а на системах таких 

уравнений — в [11]. 

Замечание 3. Некоторые модели, основанные на реакционно-диф-

фузионных уравнениях с запаздыванием (и других уравнениях мате-

матической физики второго порядка с запаздыванием), можно найти в 

[12]. 

Большой объем литературы посвящен разработке и исследова-

ниям численных методов решения уравнений переноса с запаздыва-

нием. Численные методы для уравнений переноса с постоянным запаз-

дыванием рассматриваются, например, в [1-3]. Одношаговые разност-

ные методы для уравнений переноса с запаздыванием по обеим пере-

менным разрабатываются в [13]. В [14] рассматриваются разностные 

схемы для линейного уравнения переноса с постоянными и перемен-

ными запаздыванием и опережением по x  вида (3). Предложены две 

разностные схемы, одна из которых условно устойчива, а другая — 

безусловно устойчива. В [15] разрабатывается численный метод для 

уравнения переноса с пропорциональным запаздыванием по x  и по-

стоянным запаздыванием по времени вида (4). Монография [16] по-

священа разностным численным методам решения уравнений в част-

ных производных с запаздыванием, в том числе уравнениям переноса 

с запаздыванием. Предложен подход, заключающийся в использова-

нии аналогов методов, известных для уравнений без запаздывания, и 

интерполяции с заданными свойствами для учета запаздывания.   
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Точные аналитические решения уравнений в частных производ-

ных с запаздыванием используются в формулировках тестовых задач, 

применяемых для проверки адекватности и оценки точности числен-

ных и приближенных аналитических методов интегрирования таких 

уравнений. Особенно полезны уравнения, которые содержат произ-

вольные функции и допускают точные решения со свободными пара-

метрами. Такие уравнения и точные решения позволяют легко форму-

лировать большой набор тестовых задач, которые в том числе дают 

возможность наблюдать и сравнивать работу методов в обычных и 

особых случаях, например, в устойчивых и неустойчивых областях. 

Изучение точных решений также способствует лучшему пониманию 

рассматриваемых процессов и явлений. 

Полная групповая классификация уравнений математической фи-

зики с запаздыванием реакционно-диффузионного типа и типа Клейна 

— Гордона проводилась в [17-19]. В результате было получено неко-

торое количество уравнений, допускающих точные аналитические ре-

шения, однако общее число таких уравнений было сравнительно не-

большим. Более продуктивным оказался метод функциональных свя-

зей, разработанный в [20, 21]. Он позволяет строить точные решения 

для нелинейных уравнений в частных производных с запаздыванием, 

содержащих произвольные функции. С его помощью были получены 

точные решения для нескольких сотен уравнений в частных производ-

ных с запаздыванием (см., например, [22-27]). В [28, 29] предложен 

метод структурной аналогии решений, который позволяет строить 

точные решения уравнений в частных производных с запаздыванием 

на основе точных решений более простых уравнений без запаздыва-

ния. Точные решения уравнений математической физики с запаздыва-

нием различного вида (в том числе с пространственно анизотропным 

временным запаздыванием) получены этим методом в [28-33]. Резуль-

таты последних лет по точным решениям уравнений математической 

физики второго порядка с постоянным, пропорциональным и перемен-

ным запаздыванием обобщены и структурированно изложены в моно-

графии [12]. 

Все указанные выше публикации и монографии содержат точные 

решения уравнений в частных производных второго и старших поряд-

ков с запаздыванием. Практически отсутствуют публикации по точ-

ным аналитическим решениям нелинейных уравнений первого по-

рядка с запаздыванием. На данный момент существует только одна ра-

бота [34]. В ней проводится полная групповая классификация уравне-

ния переноса с запаздыванием вида  

 = ( , ), = ( , ).t xu uu F u w w u x t     

Получено четыре уравнения, которые допускают точные решения: 
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одно уравнение с произвольной функцией, допускающее решение 

типа бегущей волны, одно линейное уравнение и два уравнения со сте-

пенными нелинейностями. Полученные решения содержат произволь-

ные функции и свободные параметры. 

В статье далее термин «точное аналитическое решение нелиней-

ного уравнения переноса с запаздыванием», или просто «точное реше-

ние», применяется в случаях, когда решение выражается: 

1. в элементарных функциях, 

2. через неопределенные интегралы, 

3. через решения уравнений переноса без запаздывания, 

4. через решения ОДУ (или систем ОДУ) с запаздыванием или без 

запаздывания. 

Допустимы также комбинации решений из пп. (1) – (4). 

Замечание 4. Точным решениям уравнений математической фи-

зики первого, второго и более старших порядков без запаздывания по-

священа книга [35], которая содержит более четырех с половиной ты-

сяч уравнений, допускающих точные решения. 

Далее рассматриваются нелинейные уравнения переноса с запаз-

дыванием:  

 = ( , ), = ( , ),t xu au F u w w u x t     

где = ( , ),u u x t  > 0a  — постоянный (а в некоторых случаях перемен-

ный = ( ) > 0a a x , но не зависящий от u ) коэффициент переноса, 

( , )F u w  — кинетическая функция, > 0  — постоянное запаздывание. 

Рассмотрено восемнадцать таких уравнений. Для трех уравнений 
сформулированы теоремы о размножении решений. 

Рассматриваются также нелинейные уравнения переноса с запаз-

дыванием и зависящим от искомой функции коэффициентом пере-

носа:  

 ( ) = ( , ), = ( , ),t xu H u u F u w w u x t     

где ( )H u  — коэффициент переноса степенного, экспоненциального 

или логарифмического вида. Рассмотрено двадцать семь таких урав-

нений 

 Точные аналитические решения всех рассмотренных уравнений 

содержат свободные параметры; сами уравнения — свободные пара-

метры и/или произвольные функции. Данное обстоятельство делает 

рассматриваемые уравнения и их точные решения подходящими для 

составления обширного каталога тестовых задач, который можно за-

тем использовать для всестороннего тестирования соответствующих 

численных методов. Описанные точные решения могут быть также ис-

пользованы при изучении качественных особенностей рассматривае-

мых и родственных уравнений с запаздыванием. 
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Точные аналитические решения уравнений переноса с запаз-

дыванием и постоянным коэффициентом переноса. 

Уравнение 1. Нелинейное уравнение переноса с запаздыванием 

 = ( ln ln ), = ( , ),t xu au u b u c w d w u x t       (5) 

допускает точное решение с функциональным разделением перемен-

ных 

 
=1

( , ) = exp ( ) ,
N

n

n

n

u x t x t
 
 
 
   

где N  — любое натуральное число, а функции = ( )n n t   описыва-

ются нелинейной системой ОДУ с постоянным запаздыванием: 

 

0 0 1 0

1

= ,

= ( 1) , = 1, , 1,

= .

i i i i

N N N

b a c d

b i a c i N

b c

   

   

  



   

    

 

  

Здесь = ( ), = 0, , .i i t i N     

Уравнение 2. Рассмотрим нелинейное уравнение переноса с за-

паздыванием  

 = ( / ), = ( , ).t xu au uf w u w u x t     (6) 

1. Уравнение (6) допускает точное решение с 

мультипликативным разделением переменных  

 = ( ),xu e t    (7) 

где   — произвольная постоянная, а функция = ( )t   удовлетворяет 

ОДУ с запаздыванием 

 ( / ) = 0, = ( ).a f t            

2. Уравнение (6) имеет также решение, более общее, чем (7): 

 = exp( ) ( ), = ,u x t z z x t        

где , , ,     — произвольные постоянные , а функция = ( )z   удо-

влетворяет ОДУ с запаздыванием  

( ) ( ) ( / ) = 0, = ( ), = .a a f e z                    

3. Уравнение (6) допускает точное решение вида  

 = ( , ), ( , ) = ( , ),tu e v x t v x t v x t    

где   — произвольная постоянная, а ( , )v x t  —   периодическое ре-

шение линейной задачи для уравнения переноса: 
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 = , ( , ) = ( , ),t xv av bv v x t v x t     (8) 

где = ( ) .b f e        

Для удобства обозначим общее решение задачи (8) как 

1= ( , ; )v V x t b . Оно имеет вид:  

 /

1

=0

( , ; ) = [ cos( ) sin( )],bx a

n n n n n n

n

V x t b e A t x B t x   


     (9) 

 
2 2

= , = ,n

n n

a

 
 

 
  (10) 

где ,n nA B  — произвольные постоянные, для которых ряд (9)–(10) и 

его производные  1 x
V  и  1 t

V  сходятся (сходимость можно обеспе-

чить, если положить = = 0n nA B  при ,n N  где N  — произвольное 

натуральное число). 

4. Уравнение (6) допускает также точное решение вида 

 = ( , ), ( , ) = ( , ),tu e v x t v x t v x t     

где    — произвольная постоянная, а ( , )v x t  —    апериодическое 

решение линейной задачи для уравнения переноса:  

 = , ( , ) = ( , ),t xv av bv v x t v x t      (11) 

где = ( )b f e    . 

Общее решение задачи (11), которое для удобства обозначим 

2= ( , ; )v V x t b , имеет вид:  

 /

1

=0

( , ; ) = [ cos( ) sin( )],bx a

n n n n n n

n

V x t b e A t x B t x   


     (12) 

 
(2 1) (2 1)

= , = ,n

n n

a

 
 

 

 
  (13) 

где ,n nA B  — произвольные постоянные, для которых ряд (12)–(13) и 

его производные  2 x
V  и  2 t

V  сходятся (сходимость можно обеспе-

чить, если положить = = 0n nA B  при ,n N  где N  — произвольное 

натуральное число). 

Уравнение 3. Нелинейное уравнение переноса с запаздыванием  

 = ln ( / ), = ( , ),t xu au bu u uf w u w u x t      (14) 

допускает решение с мультипликативным разделением переменных  

 
/

1= exp( / ) ( ),bx au C e b t    
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где 
1С  — произвольная постоянная, а функция = ( )t   удовлетво-

ряет ОДУ с постоянным запаздыванием  

 = [ ln ( / )], = ( ).b f t              

Здесь   — произвольная постоянная. 

Уравнение 4. Рассмотрим нелинейное уравнение переноса с за-

паздыванием  

 = ln ( / ), = ( , ), > 0.k

t xu au bu u uf w u w u x t k      (15) 

1. Уравнение (15) при = (ln ) /b k   допускает решение с 

мультипликативным разделением переменных 

 = exp( ) ( ),btu Ae x   

где A  — произвольная постоянная, а функция = ( )x   описывается 

нелинейным ОДУ  

 1ln = ( ).ka b f         

2. Уравнение (15) при = (ln ) /b k   допускает другое решение с 

мультипликативным разделением переменных  

 = exp( ) ( ),btu Axe t   

где A  — произвольная постоянная, а функция = ( )t   описывается 

нелинейным ОДУ с запаздыванием  

 [ ln ( / ) ] = 0, = ( ).k btb f Aae t              

Уравнение 5. Рассмотрим нелинейное уравнение переноса с за-

паздыванием  

 = ( ), = ( , ),t xu au f u w w u x t      (16) 

где (...)f  — произвольная функция. 

1. Уравнение (16) имеет точное решение с аддитивным 

разделением переменных, линейное по x : 

 = ( ),u Ax t   (17) 

где A  — произвольная постоянная, а функция = ( )t   описывается 

ОДУ первого порядка с постоянным запаздыванием 

 = ( ) , = ( ).f Aa t           (18) 

ОДУ с запаздыванием (18) имеет линейное по t  частное решение 

( ) = ,t t B    где B  — произвольная постоянная, а   — корень ал-

гебраического (трансцендентного) уравнения ( ) = 0.Aa f     

2. Уравнение (16) имеет также решение, более общее, чем (17):  
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1 2= ( ), = ,u C x C t z z x t       (19) 

где 
1C , 

2C ,  ,   — произвольные постоянные, а функция ( )z  удо-

влетворяет ОДУ первого порядка с постоянным запаздыванием 

 2 1 2( ) = ( ) , = ( ), = .a f C C a C z                  

Значениям 
1 2 0C C   в (19) соответствует решение типа бегущей 

волны. 

Уравнение 6. Рассмотрим нелинейное уравнение переноса с за-

паздыванием  

 
/

1= ( ),bx au C e t   (20) 

которое при = 0b  переходит в уравнение (16). 

1. Уравнение (20) имеет точное решение с аддитивным 

разделением переменных 

 
/

1= ( ),bx au C e t   (21) 

где 
1C  — произвольная постоянная, а функция = ( )t   удовлетво-

ряет ОДУ с запаздыванием  

= ( ), = ( ).b f t           

2. Уравнение (20) допускает также решение, более общее, чем 

(21):  

/

1= ( ), = ,bx au C e z z x t     

где 
1C  — произвольная постоянная, а функция = ( )x   удовлетво-

ряет ОДУ с запаздыванием  

/ /

1 1= ( ) .bx a bx aa b f C e C e      

Теорема 1 (о нелинейной суперпозиции решений). Пусть 
0( , )u x t  

— некоторое решение нелинейного уравнения с запаздыванием (20), а 

функция 
1= ( , ; )v V x t b  является любым    периодическим решением 

линейного уравнения переноса (8). Тогда сумма  

0 1= ( , ) ( , ; )u u x t V x t b  

также является решением уравнения (20). Общий вид функции 

1( , ; )V x t b  задается формулами (9)–(10). 

Уравнение 7. Нелинейное уравнение переноса с запаздыванием  

 = ( ), = ( , ), > 0,t xu au bu f u kw w u x t k      (22) 
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допускает точное решение с обобщенным разделением переменных  

 
1

1
= exp[ ( ) / ] ( ), = ln ,u C ct b c x a x c k


     

где 
1С  — произвольная постоянная, а функция = ( )x   удовлетво-

ряет нелинейному ОДУ  

 = ( ), = (1 ) .a b f k         

Теорема 2 (обобщает теорему 1). Пусть 
0( , )u x t  — некоторое ре-

шение нелинейного уравнения с запаздыванием (22), а функция 

1= ( , ; )v V x t b  является любым    периодическим решением линей-

ного уравнения переноса (8). Тогда сумма  

 
0 1

1
= ( , ) ( , ; ), = ln ,ctu u x t e V x t b c c k


    

также является решением уравнения (22). Общий вид функции 

1( , ; )V x t b  задается формулами (9)–(10). 

Уравнение 8. Рассмотрим нелинейное уравнение переноса с за-

паздыванием  

 = ( ), = ( , ), > 0,t xu au bu f u kw w u x t k      (23) 

которое отличается от уравнения (22) знаком перед параметром k  в 

аргументе кинетической функции. Справедлива следующая теорема. 

Теорема 3. Пусть 
0( , )u x t  — некоторое решение нелинейного урав-

нения с запаздыванием (23), а функция 
2= ( , ; )v V x t b  — любое    апе-

риодическое решение линейного уравнения переноса (11). Тогда 

сумма  

 
0 2

1
= ( , ) ( , ; ), = ln ,ctu u x t e V x t b c c k


    

также является решением уравнения (23). Общий вид функции 

2( , ; )V x t b  задается формулами (12)–(13). 

Уравнение 9. Рассмотрим более сложное нелинейное уравнение 

переноса с запаздыванием  

 = ( ) ( ) ( ), = ( , ),t xu au uf u w wg u w h u w w u x t          (24) 

где (...),f  (...),g  (...)h  — произвольные функции (одну из двух функ-

ций f  или g  можно без ограничения общности положить равной 

нулю). 

1. Уравнение (24) допускает решение с обобщенным разделением 

переменных  
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 = ( ) ( ),u t x x    (25) 

где функции = ( )x   и = ( )x   удовлетворяют системе ОДУ: 

 
= [ ( ) ( )],

= [ ( ) ( )] [1 ( )] ( ).

a f g

a f g g h

   

       

 

    
  

2. Уравнение (24) допускает более сложное, чем (25), решение с 
обобщенным разделением переменных 

=1

2
= [ ( )cos( ) ( )sin( )] ( ) ( ), = ,

N

n n n n n

n

n
u x t x t t x x


      


     

где N  — любое натуральное число, а функции = ( ),n n x   = ( ),n n x   

= ( )x   и = ( )x   определяются из системы ОДУ: 

 

= [ ( ) ( )] ,

= [ ( ) ( )] ,

= [ ( ) ( )],

= [ ( ) ( )] [1 ( )] ( ).

n n n n

n n n n

a f g

a f g

a f g

a f g g h

     

     

   

       

  

  

 

    

  

Отметим, что третье нелинейное ОДУ допускает тривиальное ре-

шение 0  : в этом случае остальные уравнения становятся линей-
ными ОДУ с постоянными коэффициентами. 

Уравнение 10. Рассмотрим нелинейное уравнение переноса с за-
паздыванием, которое обобщает уравнение (22): 

 
= ( ) ( ) ( ),

= ( , ), 0.

t xu au uf u kw wg u kw h u kw

w u x t k

     

 
  (26) 

1. Уравнение (26) допускает точное решение с обобщенным 
разделением переменных  

 
1

= ( ) ( ), = ln ,ctu e x x c k 


   (27) 

где функции = ( )x   и = ( )x   удовлетворяют системе ОДУ: 

 

1
= [ ( ) ( ) ], = (1 ) ,

= [ ( ) ( )] ( ).

a f g c k
k

a f g h

     

    

   

  

  

2. Уравнение (26) допускает более сложное, чем (27), решение с 
обобщенным разделением переменных 

 
=1

= ( ) [ ( ) cos( ) ( )sin( )] ( ),
N

ct

n n n n

n

u e x x t x t x     
 

   
 

   
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1 2

= ln , = ,n

n
c k




 
  

где N  — любое натуральное число, а функции = ( ),n n x   = ( ),n n x   

= ( )x   и = ( )x   определяются из системы ОДУ: 

 

1
= [ ( ) ( ) ] , = (1 ) ,

1
= [ ( ) ( ) ] ,

1
= [ ( ) ( ) ],

= [ ( ) ( )] ( ).

n n n n

n n n n

a f g c k
k

a f g c
k

a f g c
k

a f g h

       

     

   

    

    

   

  

  

  

Уравнение 11. Нелинейное уравнение переноса с запаздыванием 

 
= ( ) ( ) ( ),

= ( , ), > 0,

t xu au uf u kw wg u kw h u kw

w u x t k

     


  (28) 

которое обобщает уравнение (23), допускает решение с обобщенным 

разделением переменных 

 =1

= [ ( )cos( ) ( )sin( )] ( ),

1 (2 1)
= ln , = ,

N
ct

n n n n

n

n

u e x t x t x

n
c k

    




 

 




  

где N  — любое натуральное число, а функции = ( ),n n x   = ( )n n x   

и = ( )x   определяются из системы ОДУ: 

 

1
= [ ( ) ( ) ] , = (1 ) ,

1
= [ ( ) ( ) ] ,

= [ ( ) ( )] ( ).

n n n n

n n n n

a f g c k
k

a f g c
k

a f g h

       

     

    

    

   

  

  

Уравнение 12. Нелинейное уравнение переноса с запаздыванием  

 
2 2 2 2= ( ) ( ), = ( , ),t xu au uf u w wg u w w u x t        (29) 

допускает точное решение с обобщенным разделением переменных:  

 

= ( )cos( ) ( )sin( ),

(2 1)
= , = 0, 1, 2, ,

2

n n n n

n

u x t x t

n
n

   









 
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где функции = ( ),n n x   = ( )n n x   определяются из системы ОДУ:  

 

2 2= ( ) ( 1) ( ) , = ,

= ( ) ( 1) ( ) .

n

n n n n n n n

n

n n n n n

a f g

a f g

         

      

    

   
  

Уравнение 13. Рассмотрим нелинейное уравнение переноса с за-

паздыванием  

 = ( , / ), = ( , ), 0,t xu au uf u kw w u w u x t k      (30) 

где 
1 2( , )f y y  — произвольная функция двух аргументов. 

 = ( ), = ,u U z z x t    

Уравнение (30) допускает точное решение типа бегущей волны  

 ( ) = ( , / ), = ( ), = .a U Uf U kW W U W U z         (31) 

Уравнение (31) при 
1 1 1

= 0,f
a k

 


  
  

  
 имеет частное решение 

 
1

1
( ) = , = ln .zU z C e k 


  

Точные аналитические решения уравнений переноса с запаз-

дыванием и переменным по x коэффициентом переноса. 

Уравнение 14. Нелинейное уравнение переноса с запаздыванием  

 ( ) = ( ) ( ), = ( , ),t xu a x u b x f u w w u x t      (32) 

коэффициенты которого зависят от x , допускает точное решение с ад-

дитивным разделением переменных в замкнутом виде: 

  
1

= ( ) ( ) 1 .
( )

u t f b x dx
a x


 

  
 
   

Уравнение 15. Нелинейное уравнение переноса с запаздыванием  

 ( ) = ( ) ( / ), = ( , ),t xu a x u b x uf w u w u x t     (33) 

имеет точное решение с мультипликативным разделением перемен-

ных  

 = ( ),tu e x   

где   — произвольная постоянная, а функция = ( )x   описывается 

линейным ОДУ  

 ( ) [ ( ) ( )] = 0.a x b x f e        
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Уравнение 16. Нелинейное уравнение переноса с запаздыванием  

 ( ) = ( ) ( / ), = ( , ),t xu a x u b x u uf w u w u x t      (34) 

имеет точное решение с мультипликативным разделением перемен-

ных  

 = ( ) ( ),u x t    

где функции ( )x  и = ( )t   описываются соответственно линейным 

ОДУ и нелинейным ОДУ с запаздыванием: 

 
( ) ( ) [ ( )] ( ) = 0,

= [ ( / )], = ( ),

a x x b x x

f t

  

       

  

  
  (35) 

  — произвольная постоянная. 

Нелинейное ОДУ с запаздыванием (35) допускает частные реше-

ния вида = ,tAe  где A  — произвольная постоянная,   определя-

ется из алгебраического (трансцендентного) уравнения 

 f e     . 

Уравнение 17. Нелинейное уравнение переноса с запаздыванием, 

которое имеет достаточно общий вид:  

 ( ) = ( ) ( , ), = ( , ),t xu a x u b x f u w w u x t     (36) 

допускает точное решение c функциональным разделением перемен-

ных 

 
( ) 1

= ( ), = ,
( )

b x
u U z z t dx

a x

 
  

 
   

где функция = ( )U U z  определяется из нелинейного ОДУ первого по-

рядка с запаздыванием  

 = ( , ), = ( ).U f U W W U z     

Уравнение 18. Нелинейное уравнение переноса с запаздыванием  

 ( ) = ( , ) ( , ), = ( , ),t xu a x u uf x u w g x u w w u x t        (37) 

допускает точное решение c обобщенным разделением переменных 

 = ( ) ( ),u x t x    

где функции = ( )x   и = ( )x   описываются ОДУ первого порядка  

 
 

   

( ) ( ) = ( ) , ( ) ,

( ) ( ) = ( ) , ( ) , ( ) ( ).

a x x x f x x

a x x x f x x g x x x

  

    



  
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Точные аналитические решения уравнений переноса с запаз-

дыванием и зависящим от искомой функции u коэффициентом пе-

реноса. 

Уравнение 19. Нелинейное уравнение переноса с запаздыванием 

 
1 0 1 2( ) = , = ( , ),t xu a u a u bu b w w u x t       (38) 

допускает точное решение c обобщенным разделением переменных  

 
1 2= ( ) ( ) ,u t t x    

где функции 
1 1= ( )t   и 

2 2= ( )t   описываются системой ОДУ с 

запаздыванием 

 
1 1 1 2 0 2 1 1 2 1 1 1

2

2 1 2 1 2 2 2 2 2

= , = ( ),

= , = ( ).

a a b b t

a b b t

       

      

     

    
  

Уравнение 20. Нелинейное уравнение переноса с запаздыванием  

 2

1 0 1 2( ) = , = ( , ),t xu a u a u ku b u b w w u x t        (39) 

допускает точное решение c обобщенным разделением переменных 

 
1 2 1= ( ) ( )exp( / ),u t t kx a    

где функции 
1 1= ( )t   и 

2 2= ( )t   описываются системой ОДУ с за-

паздыванием  

 

2

1 1 1 1 2 1 1 1

0
2 1 2 1 2 2 2 2 2

1

= , = ( ),

= , = ( ).

b k b t

a k
b k b t

a

      

       

   

 
     

 

  

Уравнение 21. Нелинейное уравнение переноса со степенными 

нелинейностями и запаздыванием  

 
1 1 1= , = ( , ),n n n n n

t xu au u bu cu ku mu w w u x t          (40) 

которое зависит от шести параметров, допускает точное решение c 

функциональным разделением переменных  

  
1/

= ( )exp( / ) ( ) ,
n

u t bnx a t    

где функции = ( )t   и = ( )t   описываются системой ОДУ с за-

паздыванием 

 

2= , = ( ),

= , = ( ).

kn cn bn mn t

cn bn mn t

      

      

    

   
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Уравнение 22. Нелинейное уравнение переноса с экспоненциаль-
ными нелинейностями и запаздыванием  

 ( )= , = ( , ),u u u w u

t xu ae u be c ke me w u x t            (41) 

которое зависит от шести параметров, допускает точное решение c 
функциональным разделением переменных  

21 1
= ln[ exp( / ) ], = ( ( ) 4 ),

2
u A t b x a c m c m bk

b
   


        

где A  — произвольная постоянная,   — корень трансцендентного 

уравнения = ( ) .m e c b        

Уравнение 23. Нелинейное уравнение переноса с запаздыванием  

 1/2 1/2 1/2 1/2= ( ), = ( , ),t xu au u bu f u w w u x t       (42) 

которое зависит от произвольной функции (...),f  допускает точное ре-

шение c функциональным разделением переменных: 

 2= [ ( ) ( )] ,u x t x    

где = ( )x   и = ( )x   описываются системой ОДУ 

 
22 = 2 ,

2 = 2 ( ).

a b

a b f

  

   

 

  
  (43) 

Уравнение (43) является уравнением Бернулли и имеет решение 

 12= ( 2) ,
b

x
ab Ae


   

где A  — произвольная постоянная. 
Уравнение 24. Нелинейное уравнение переноса с запаздыванием  

 = ( / ), = ( , ),k

t xu au u uf w u w u x t     (44) 

имеет точное решение c мультипликативным разделением перемен-
ных  

 1/= ( / ) ( ),ku k bx a A t   

где A  — произвольная постоянная, а функция = ( )t   удовлетво-

ряет нелинейному ОДУ с запаздыванием 

 
1= ( / ), = ( , ).k k

t xu au u bu uf w u w u x t       

Уравнение 25. Рассмотрим нелинейное уравнение переноса с за-
паздыванием  

 
1= ( / ), = ( , ).k k

t xu au u bu uf w u w u x t      (45) 
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1. Уравнение (45) допускает точное решение c 

мультипликативным разделением переменных  

 = ( ) ( ),u x t    

где функция = ( )t   описывается нелинейным ОДУ с запаздыванием  

 1= ( / ), = ( ),k f t            

а функция = ( )x   удовлетворяет ОДУ Бернулли  

 1= .ka b       (46) 

Здесь   — произвольная постоянная. 

ОДУ Бернулли (46) имеет общее решение  

 
1 1

= [ exp( / )] ,k kb A bkx a 


   

где A  — произвольная постоянная. 

2. Уравнение (45) допускает другое точное решение c 

мультипликативным разделением переменных 

 = exp( / ) ( ),u bx a t   

где функция = ( )t   описывается нелинейным ОДУ с запаздыванием 

 = ( / ), = ( ).f t          (47) 

3. Уравнение (45) допускает еще одно точное решение c 

мультипликативным разделением переменных  

 
1

1= exp( ( 1) / ) ( ),ku b k x a t   

где = ( )t   описывается нелинейным ОДУ с запаздыванием (47). 

Уравнение 26. Нелинейное уравнение переноса с запаздыванием 

 
1 1= ( ), = ( , ),k k n n n n

t xu au u bu u f u w w u x t         (48) 

допускает точное решение c функциональным разделением перемен-

ных  

 

1

= ( ) ,
nbn

u A x t
a


 

  
 

  

где A  — произвольная постоянная, а функция = ( )t   удовлетворяет 

нелинейному ОДУ с запаздыванием  

 = ( ), = ( ).nf t          



Аналитические решения нелинейных уравнений с запаздыванием… 

157 

Уравнение 27. Рассмотрим нелинейное уравнение переноса с за-

паздыванием  

 = ( ), = ( , ).u

t xu ae u f u w w u x t      (49) 

1. Уравнение (49) допускает точное решение c аддитивным 

разделением переменных  

 
1

= ln( ) ( ),u Ax B t


    

где A  и B  — произвольные постоянные, а функция = ( )t   удовле-

творяет нелинейному ОДУ с запаздыванием  

 = ( ) , = ( ).
aA

f e t     


      

2. Уравнение (49) допускает также точное решение вида 

 
1 1

= ln( ) ( ), = ln( ),u Ax B z z C t Ax B
A




       

где A , B , C  — произвольные постоянные, а функция = ( )z   удо-

влетворяет нелинейному ОДУ с запаздыванием  

 (1 ) = ( ) , = ( ).
aA

ae f e z      


      

Уравнение 28. Нелинейное уравнение переноса с запаздыванием 

 = ( ) = ( , ),u u

t xu ae u be f u w w u x t        (50) 

допускает точное решение c аддитивным разделением переменных:  

 = ( ),
b

u x t
a

   

 где функция = ( )t   описывается нелинейным ОДУ с запаздыва-

нием  

 = ( ), = ( ).f t          

Уравнение 29. Нелинейное уравнение переноса с запаздыванием 

 
( )= ( ) = ( , ),u u u u w

t xu ae u be e f e e w u x t             (51) 

допускает точное решение c функциональным разделением перемен-

ных 

 
1

= ln ( ) ,
b

u x t
a






 
 

 
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где функция = ( )t   описывается нелинейным ОДУ с запаздыванием 

 = ( ), = ( ).f t           

Уравнение 30. Нелинейное уравнение переноса с запаздыванием  

 ( ln ) = ln ( / ), = ( , ),t xu a u b u cu u uf w u w u x t       (52) 

имеет точное решение c мультипликативным разделением перемен-

ных 

 /= ( ),cx au e t   

где = ( )t   удовлетворяет нелинейному ОДУ с запаздыванием 

 = [ ( / ) / ], = ( ).f bc a t           

Уравнение 31. Нелинейное уравнение переноса с запаздыванием  

 

 
1 2 3

( ) ( )
( ) = ( ) ( ) ,

( )

= ( , ),

t x

f u f w
u f u u a f u a f w a b

f u

w u x t 


   





  (53) 

где (...)f  — произвольная функция, допускает точное решение в не-

явном виде  

 3
1 2

1 2

( ) = , = ,x t a
f u Ae a a e

a a

    


  

где A  — произвольная постоянная, а константа   определяется из 

трансцендентного уравнения = 0.b be      

Уравнение 32. Нелинейное уравнение переноса с запаздыванием  

 

 1 2 3( ) ( )
( ) = [ ( ) ( )] ,

( )

= ( , ),

t x

b f u b f w b
u f u u a f u f w

f u

w u x t 

 
  





  (54) 

допускает точное решение в неявном виде 

 3

1 2

( ) = , = (1 ),x t b
f u Ae a e

b b

    


  

где A  — произвольная постоянная, а константа   определяется из 

трансцендентного уравнения 1 2 = 0.b b e      

Уравнение 33. Нелинейное уравнение переноса с запаздыванием 

 
1/2 1/2 1/2 1/2 1/2 1/2= ( ) ( ), = ( , ),t xu au u f u w u g u w w u x t        (55) 
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где (...)f  и (...)g  — произвольные функции, допускает точное реше-

ние с функциональным разделением переменных 

 2= [ ( ) ( )] ,u x t x    

где функции = ( )x   и = ( )x   определяются из системы ОДУ 

 
22 = [ ] 2 ,

2 = [ ] [ ] 2 .

a g

a f g

   

    

 

  
  

Уравнение 34. Нелинейное уравнение переноса с запаздыванием 

 
1= ( / ) ( / ), = ( , ),k k

t xu au u uf w u u g w u w u x t      (56) 

допускает точное решение вида  

 = , = ( ) / ,x tu Ae g e a      

где константа   определяется из алгебраического (трансцендентного) 

уравнения = ( ).f e     

Уравнение 35. Нелинейное уравнение переноса с запаздыванием 

 
1 1 1 1= ( ) ( ), = ( , ),k k k k k k

t xu au u f u w u g u w w u x t            (57) 

допускает точное решение вида 

 
1

1
1

= ( ) , = ( ),k
k

u A x t f
a

   


    

где A  — произвольная постоянная, а константа   определяется из ал-

гебраического (трансцендентного) уравнения = (1 ) ( ).k g    

Уравнение 36. Нелинейное уравнение переноса с запаздыванием 

 = ( ) ( ), = ( , ),u u

t xu ae u f u w e g u w w u x t         (58) 

допускает точное решение типа бегущей волны  

 = ( ), = ,u z z x t     

где функция ( )z  определяется из ОДУ с запаздыванием  

 ( ) = ( ) ( ), = ( ), = .a e f e g z                   

Уравнение 37. Нелинейное уравнение переноса с запаздыванием  

 = ( ) ( ), = ( , ),u u w u u w

t xu ae u f e e e g e e w u x t             (59) 

допускает точное решение вида  

 
1

= ln( ), = ( ),u A x t f
a


   


    
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где A  — произвольная постоянная, а   определяется из алгебраиче-

ского (трансцендентного) уравнения = ( ).g     

Уравнение 38. Нелинейное уравнение переноса с запаздыванием 

 

1 2( ) ( ) [ ( ) ( )]
[ ( ) ] = ,

( )

= ( , ),

t x

c g u c g w f g u g w
u ag u b u

g u

w u x t 

  
 





  (60) 

где (...)f  и (...)g  — произвольные функции, допускает точное реше-

ние в неявном виде 

 1 2( ) = ( ),
c c

g u x t
a




   

где функция = ( )t   удовлетворяет ОДУ с запаздыванием 

 
1 2

2

( )
= ( ) ( ),

= ( ).

b c c
c f

a

t

    

  


    



  

Уравнение 39. Нелинейное уравнение переноса с запаздыванием  

 
1( ) = ( ) ( / ), = ( , ),k k

t xu a x u u b x u uf w u w u x t      (61) 

имеет точное решение с мультипликативным разделением перемен-

ных 

 
( )

= exp ( ),
( )

b x
u dx t

a x


 
 
 
   

где функция = ( )t   удовлетворяет ОДУ с запаздыванием  

 = ( / ), = ( ).f t          

Уравнение 40. Нелинейное уравнение переноса с запаздыванием 

 ( ) = ( ) ( ), = ( , ),u u

t xu a x e u b x e f u w w u x t        (62) 

допускает точное решение с аддитивным разделением переменных  

 
( )

= ( ),
( )

b x
u dx t

a x
   

где функция = ( )t   удовлетворяет ОДУ с запаздыванием 

 = ( ), = ( ).f t          

Уравнение 41. Нелинейное уравнение переноса с запаздыванием 
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[ ( ) ( )]
( ) = [ ( ) ( )] ,

( )

= ( , ),

t x

h f u f w
u af u u g f u f w

f u

w u x t 


  





  (63) 

где (...)f , (...)g  и (...)h  — произвольные функции, допускает точное 

решение в неявном виде  

 
( )

( ) = ,
g

f u A x t
a


    

где A  — произвольная постоянная, а константа   удовлетворяет ал-

гебраическому (трансцендентному) уравнению = ( ).h    

Уравнение 42. Нелинейное уравнение переноса с запаздыванием 

 

( ) ( ) ( )
( ) = ( ) ,

( ) ( ) ( )

= ( , ),

t x

f w f u f w
u af u u f u g h

f u f u f u

w u x t 

   
    

   



  (64) 

допускает точное решение в неявном виде  

 
( )

( ) = exp ,
g e

f u A x t
a




 

 
 

  

где A  — произвольная постоянная, а   определяется из алгебраиче-

ского (трансцендентного) уравнения = ( ).h e     

Уравнение 43. Нелинейное уравнение переноса с запаздыванием  

  
1

( ) = ( ) [ ( ) ( )] , = ( , ),
( )

t xu g u u bg u h f u f w w u x t
f u

   


  (65) 

допускает точное решение в неявном виде  

 ( ) = ( ),f u bx t   

где функция = ( )t   удовлетворяет ОДУ с запаздыванием  

 = ( ), = ( ).h t          

Уравнение 44. Нелинейное уравнение переноса с запаздыванием 

 

[ ( ) ( )]
( ) ( ) = ( ) [ ( ) ( )] ,

( )

= ( , ),

t x

h f u f w
u a x f u u b x g f u f w

f u

w u x t 


  





  (66) 

допускает точное решение в неявном виде  

 
( )

( ) = ( ) ,
( )

b x
f u A g dx t

a x
     
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где A  — произвольная постоянная, а константа   определяется из ал-

гебраического (трансцендентного) уравнения = ( ).h    

Уравнение 45. Нелинейное уравнение переноса с запаздыванием 

 

( ) ( ) ( )
( ) ( ) = ( ) ( ) ,

( ) ( ) ( )

= ( , ),

t x

f w f u f w
u a x f u u b x f u g h

f u f u f u

w u x t 

   
    

   



  (67) 

допускает точное решение в неявном виде  

 
( )

( ) = exp ( ) ,
( )

b x
f u A g e dx t

a x

  
 

 
   

где A  — произвольная постоянная, а константа   — корень алгебра-

ического (трансцендентного) уравнения = ( ).h e     

Выводы. Рассмотрено сорок пять нелинейных уравнений пере-

носа с запаздыванием, в том числе восемнадцать уравнений с постоян-

ным коэффициентом переноса и двадцать семь уравнений с коэффи-

циентом переноса, зависящим от искомой функции. Все уравнения со-

держат свободные параметры и/или произвольные функции. Полу-

чены новые точные решения с аддитивным, мультипликативным и 

обобщенным разделением переменных, решения типа бегущей волны 

и автомодельные решения. Для трех уравнений с постоянным коэффи-

циентом переноса сформулированы теоремы о размножении решений. 

Все решения выражаются в элементарных функциях, либо через не-

определенные интегралы, либо через решения обыкновенных уравне-

ний с запаздыванием или без него, либо через решения уравнений в 

частных производных без запаздывания. Результаты работы могут 

быть полезны для анализа рассматриваемых и родственных нелиней-

ных уравнений в частных производных с запаздыванием, а также для 

тестирования численных и приближенных аналитических методов ин-

тегрирования таких уравнений. 

Автор благодарит А.Д. Полянина за внимание к статье и полезные 
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Nonlinear transport equations with constant delay are considered. The introduction pro-
vides a brief overview of publications that study transport mathematical models with delay 
and develop numerical methods for solving the corresponding problems. The main sections 
of the article describe more than forty transport equations with constant delay and various 
transfer coefficients, which allow exact analytical solutions. The kinetic functions of all 
considered equations contain free parameters or arbitrary functions. Additive, multiplica-
tive, generalized, and functional separable solutions, as well as traveling-wave and self-
similar solutions are obtained. Many solutions are expressed in terms of elementary func-
tions. For some types of equations, theorems on the “multiplication” of solutions are for-
mulated. The described equations and their solutions can be used to evaluate the accuracy 
of numerical methods for integrating the corresponding nonlinear transport problems with 
delay. 
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