519.6:621.646.3 Computer simulation of dynamic processes in the hydraulic flow stabilizer and its optimization based on evolutionary algorithm

Ivanov M. Y., Bushuev A. Y. (Bauman Moscow State Technical University), Shcherbakov N. S. (Bauman Moscow State Technical University), Resh G. F.

MATHEMATICAL MODELING, OPTIMIZATION, RIGID SYSTEMS OF DIFFERENTIAL EQUATIONS, GEER'S METHOD, GENETIC ALGORITHM WITH REAL CODING, FLOW STABILIZER, HYDRODYNAMIC FORCE, STATIC CHARACTERISTIC


doi: 10.18698/2309-3684-2024-3-100119


In various technical systems hydraulic devices are widely used to ensure the synchronous movement of executive bodies — unregulated chokes, flow dividers, regulators and/or flow stabilizers. The latter are characterized by the fact that their functioning occurs in the range of pressure drops of liquid amounting to several hundred atmospheres. The issues related to the numerical simulation of non-stationary physical processes in the flow stabilizer the design of which is protected by a patent of the Russian Federation for the invention are considered. The results of computer modeling based on a theoretical model with concentrated parameters, the use of the finite-difference implicit Geer method for solving a system of rigid differential equations are presented. The problem of optimal improvement of the design of such flow stabilizer in accordance with the selected criterion is formulated and solved. This optimization criterion is to ensure the condition of the minimum possible positive statism of the flow-drop (static) characteristic in conditions of wide change in the pressure drop on the device and the effect of the axial component of the hydrodynamic force. The problem of optimal design improvement was solved using one of the widely used evolutionary optimization algorithms — genetic algorithm with real coding. The results of computational experiments in modeling physical processes of the analysis problem correspond to the available experimental data that were previously obtained by the authors of the work. It is shown that improvement of the existing design of the flow stabilizer is possible — the angle of inclination of the flow-drop characteristic to the horizontal axis has decreased almost twofold. At the same time, it was possible to obtain higher accuracy of maintaining volumetric flow rate of the liquid. This accuracy is on the order of ±7,5 % of the nominal (tuning) value of the flow stabilizer. For comparison, the accuracy of maintaining the volume flow rate of the liquid before performing the optimization procedure was about ±10 %.


[1] Bashta T.M., Rudnev S.S., Nekrasov B.B., etc. Gidravlika, gidromashiny i gidroprivody [Hydraulics, hydraulic machines and hydraulic drives]. Moscow, Alliance Publ., 2009, 423 p.
[2] Sveshnikov V.K. Stanochnye gidroprivody [Machine hydraulic drives]. Moscow, Mashinostroenie Publ., 2008, 640 p.
[3] Gavrilenko B.A., Minin V.A., Rozhdestvensky S.N. Gidravlicheskij privod [Hydraulic drive]. Moscow, Mashinostroenie Publ., 1968, 502 p.
[4] Bashta T.M. Mashinostroitel'naya gidravlika [Mechanical engineering hydraulics]. Moscow, Mashinostroenie Publ., 1971, 672 p.
[5] Glickman B.F. Avtomaticheskoe regulirovanie zhidkostnyh raketnyh dvigatelej [Automatic control of liquid rocket engines]. Moscow, Mashinostroenie Publ., 1974, 396 p.
[6] Chvanova V.K. Matematicheskoe modelirovanie rabochego processa zhidkostnyh raketnyh dvigatelej [Mathematical modeling of the working process of liquid rocket engines]. Moscow, MAI Publ., 1999, 228 p.
[7] Casey В., Tumarkin M. How to Synchronize Hydraulic Cylinders [Electronic resource], 2006. URL: https://www.hydraulicsupermarket.com/synchronization.html (accessed: 30.04.2024).
[8] Gamynin N.S., Karev V.I., Potapov A.M., Selivanov A.M. Gidravlicheskie privody letatel'nyh apparatov: ucheb. dlya aviac. spec. vuzov [Hydraulic drives of aircraft: textbook. for aviac. spec. universities]. Moscow, Mashinostroenie Publ., 1992, 366 p.
[9] Bushuev A.Yu., Ivanov M.Yu., Korotaev D.V., Resh G.F. Matematicheskoe modelirovanie drossel'nyh gidrosistem sinhronizacii ispolnitel'nyh organov letatel'nyh apparatov [Mathematical modeling of throttle hydraulic synchronization systems of executive organs of aircraft]. Moscow, BMSTU Publ., 2022, 135 p.
[10] Ivanov M.Yu., Novikov A.E. Resh G.F. Features of designing and numerical simulation of flow stabilizers in actuator line synchronization systems. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2017, no. 2, pp. 54–65.
[11] Koroteev A.S. Komp'yuternye modeli zhidkostnyh raketnyh dvigatelej [Computer models of liquid rocket engines]. Moscow, Mashinostroenie Publ., 2009, 374 p.
[12] Zhuk D.M., Manichev V.B., Rodionov S.V. Modelirovanie dinamicheskih sistem s pomoshch'yu programmy PA10 [Modeling of dynamic systems using the PA10 program]. Inzhenernyj vestnik [Engineering Bulletin], 2014, no. 12, pp. 531–540.
[13] Pat. 2548613 Russian Federation, Int. Cl. G05D 7/01. Flow rate governor / A.A. Dergachev, M.Yu. Ivanov, G.A. Kopkov, A.P. Kuchin, A.Е. Novikov, G.F. Resch, V.G. Sinyavin. – no. 2014102669/28; appl. 29.01.2014; publ. 20.04.2015, Bull. № 11. – 7 p. : ill. 2.
[14] Melnikova V.G., Kotsur O.S., Shcheglov G.A. Numerical simulation of the flow rate regulator valve using OpenFOAM. Programming and Computer Software, 2017, vol. 29, iss. 1, pp. 53–70.
[15] Melnikova V.G. Investigation of the operation conditions of the flow valve using numerical simulation. Tekhnika XXI veka glazami molodyh uchenyh i specialistov [Technology of the XXI century through the eyes of young scientists and specialists], 2022, no. 20, pp. 226–233.
[16] Belyaev E.N., Kolomentsev A.I., Nascimento L.B., Nazarov V.P. Influence of design parameters of a flow regulator on its static and dynamic characteristics. Vestnik of SibGAU, 2014, no. 1 (53), pp. 109–113.
[17] Chekurova M.S. Ispol'zovanie graficheskogo kal'kulyatora Desmos [Using the Desmos graphical calculator]. Molodoj uchyonyj [Young Scientist], 2023, no. 46 (493), pp. 437–440.
[18] Hairer E., Wanner G. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Heidelberg, Springer Berlin, 1996, 614 p.
[19] Rakitskiy Yu.V., Ustinov S.M., Chernorutsky I.G. Chislennye metody resheniya zhestkih sistem [Numerical methods for solving rigid systems]. Moscow, Nauka Publ., 1979, 208 p.
[20] Zhuk D.M., Manichev V.B., Zakharov M.K. Sravnenie sovremennyh reshatelej zhestkih sistem obyknovennyh differencial'nyh uravnenij s reshatelyami Si biblioteki SADEL [Comparison of modern solvers of rigid systems of ordinary differential equations with Si solutions of the SADEL library]. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and Education: Scientific publication of BMSTU], 2012, no. 8, pp. 283–300.
[21] Gear C.W. Numerical Initial Value Problems in Ordinary Differential Equations. Englewood Cliffs, New Jersey, Prentice-Hall, Inc, 1971, 253 p.
[22] Shimanskaya T.M., Zrodnikov A.V. Effektivnyj algoritm integrirovaniya uravnenij kinetiki reaktora na osnove chislennyh metodov Gira [An effective algorithm for integrating reactor kinetics equations based on Geer numerical methods]. Obninsk, FEI Publ., 1983, 18 p.
[23] Arushanyan O.B., Zaletkin S.F. Chislennoe reshenie obyknovennyh differencial'nyh uravnenij na Fortrane [Numerical solution of ordinary differential equations on Fortran]. Moscow, MSU Publ., 1990, 336 p.
[24] Verzhbitsky V.M. Osnovy chislennyh metodov [Fundamentals of numerical methods]. Moscow, Vysshaya shkola Publ., 2002, 840 p.
[25] Semenov M.E., Kolupaeva S.N. Analiz oblastej absolyutnoj ustojchivosti neyavnyh metodov resheniya sistem obyknovennyh differencial'nyh uravnenij [Analysis of the areas of absolute stability of implicit methods for solving systems of ordinary differential equations]. Bulletin of the Tomsk Polytechnic University, 2010, vol. 317, no. 2, pp. 16–22.
[26] Karpenko A.P. Sovremennye algoritmy poiskovoj optimizacii. Algoritmy, vdohnovlennye prirodoj: uchebnoe posobie [Modern search engine optimization algorithms. Algorithms inspired by nature: a textbook]. Moscow, BMSTU Publ., 2014, 446 p.
[27] Panchenko T.V. Geneticheskie algoritmy [Genetic algorithms]. Astrakhan, Astrakhan University Publ., 2007, 87 p.
[28] Panteleev A.V., Metlitskaya D.V. An application of genetic algorithms with binary and real coding for approximate synthesis of suboptimal control in deterministic systems. Automation and Remote Control, 2011, vol. 72, no. 11, pp. 2328–2338.
[29] Idelchik I.E. Spravochnik po gidravlicheskim soprotivleniyam [Handbook of hydraulic resistance]. Moscow, Mashinostroenie Publ., 1992, 672 p.


Иванов М.Ю., Бушуев А.Ю., Щербаков Н.С., Реш Г.Ф. Компьютерное моделирование динамических процессов в гидравлическом стабилизаторе расхода и его оптимизация на основе эволюционного алгоритма. Математическое моделирование и численные методы, 2024, № 3, с. 100-119.



Download article

Количество скачиваний: 76