and Computational Methods

doi: 10.18698/2309-3684-2023-4-6473

One of the types of gravitational scattering in the Solar System within the framework of the circular restricted three-body problem (CR3BP) are the gravity assist maneuvers of "particles of insignificant mass" (spacecraft, asteroids, comets, etc.). For their description, a physical analogy with the scattering of beams of charged alpha-particles in the Coulomb field is useful. However, unlike the scattering of charged particles, there are external restrictions on the ability to perform gravity assists associated with the limited size of the spheres of influence of the planet. At the same time, internal limitations on the possibility of performing gravity assists are known from the literature on CR3BP, estimated by the effective radii of planets (including gravitational capture by a planet falling into it). They depend on the asymptotic velocity of the particle relative to the planet. For obvious reasons, their influence makes it impossible to effectively use gravity assist maneuvers. The paper presents generalized estimates of the sizes of near-planetary regions (flat "perturbation rings" or "perturbation hollow spheres" rotating synchronously with a small body in the three-dimensional case), falling into which is a necessary condition for the implementation of gravity assists. A detailed analysis shows that Neptune and Saturn have characteristic of perturbation hollow spheres of the largest size in the Solar System, and Jupiter occupies only the fourth place in this list

Borovin G.K., Golubev Yu.F., Grushevsky A.V., Zaslavsky G.S., Za-grabkin M.V., Koryanov V.V., Lavrenov S.M., Morskoy I.M., Simonov A.V., Stepanyants V.A., Tuchin A.G., Tuchin D.A., Yaroshevsky V.S. Ballistikonavigacionnoe obespechenie polyotov avtomaticheskih kosmicheskih apparatov k telam Solnechnoj sistemy [Ballistics-navigation support for flights of automatic space vehicles to the bodies of the Solar system]. Khimki, NPO Lavochkina Publ., 2018, 335 p.

Labunsky A.V., Papkov O.V., Sukhanov K.G. Multiple Gravity Assist Interplanetary Trajectories. CRC Press, 1998, 292 p.

Golubev Yu F., Grushevskii A.V., Koryanov V.V., Tuchin A.G. Gravity Assist Maneuvers of a Spacecraft in Jupiter System. Journal of Computer and Systems Sciences International, 2014, vol. 53, no. 3, pp. 445–463. DOI: 10.1134/S1064230714030083

Landau L.D., Lifshitz E.M. Mechanics. Course of Theoretical Physics.Pergamon Press, 1976, 197 p.

Golubev Yu.F., Grushevskii A.V., Koryanov V.V., Tuchin A.G., Tuchin D.A.The Rutherford Formula Generalized for the Synthesis of Gravity Assist Chains. Doklady Physics, 2021, vol. 66, iss. 12, pp. 333–335. DOI: 10.1134/S1028335821120053

Rutherford E. The scattering of α and β particles by matter and the structure of the atom. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1911, vol. 21, iss. 125, pp. 669–688. DOI: 10.1080/14786440508637080

Golubev Yu.F., Grushevsky A.V., Koryanov V.V., Tuchin A.G., Tuchin D.A. Gravity assists gravitational scattering and the perturbation rings in the solarsystem. Keldysh Institute Preprints, 2021, no. 2, pp. 1–26.

Borovin G.K., Stepaniants V.A., Zahvatkin M.V., Usovik I.V. Statistical model of space objects distribution in space of orbital parameters. Маthematical Modeling and Coтputational Methods, 2019, no. 4, pp. 69–90.

Okhotsimsky D.E., Sikharulidze Yu.G. Osnovy mekhaniki kosmicheskogo poleta[Fundamentals of space flight mechanics]. Moscow, Nauka, 1990, 448 p.

Боровин Г.К., Голубев Ю.Ф., Грушевский А.В., Тучин А.Г. Моделирование пертурбационных оболочек для гравитационных маневров в Солнечной системе.Математическое моделирование и численные методы, 2023, № 4, с. 64–73.

Количество скачиваний: 75