519.6:533.6 Numerical simulation of the flow structure near the descent vehicle and located in its wake parachute atsupersonic motion

Babakov A. V. (Institute for Computer Aided Design of the Russian Academy of Sciences)

MATHEMATICAL MODELING, AERODYNAMICS, DESCENT VEHICLE, PARACHUTE, FLOW PATTERN, FORCE CHARACTERISTICS


doi: 10.18698/2309-3684-2023-3-6279


The article presents the results of a numerical study of the spatial non-stationary flow structure arising during supersonic motion in the atmosphere of the descent vehicle and parachute located in its vortex wake. The cases of the vehicle at angle of attack and various location of the parachute in relation to the vehicle are considered. For different distances between vehicle and parachute the patterns of the spatial non-stationary vortex structure of the flow occurring between them and in the near wake of the parachute are given. The significant influence of the distance between the vehicle and the parachute on the flow structure and force characteristics effect of the flow on the parachute is shown. Data on the influence of attack angle of the vehicle on the aerodynamic characteristics of parachute are presented. Numerical simulations are performed using two conservative numerical methods based on the approximation of conservation laws written in integral form for a finite volume. Calculations are based on the parallel algorithms implemented on modern supercomputer systems.


Pilyugin N.N., Hlebnikov V.S. Problema sozdaniya parashyutnoj sistemy dlyatormozheniya letatel'nogo apparata pri sverhzvukovyh rezhimah. [The problem of creating a parachute system for braking an aircraft in supersonic regimes]. Prikladnaya matematika i tekhnicheskaya fizika, 2010, vol. 51, no. 5, pp. 5-16.
Cyganov P.G. Vliyanie soprotivleniya perednego tela na perestrojku te-cheniya mezhdu dvumya telami, odno iz kotoryh nahoditsya v slede drugogo pri sverhzvukovom obtekanii. [Effect of leading-body drag on the rearrangement of the flow between two bodies, one of which is in the wake of the other in supersonic flow]. Trudy CAGI [Proceedings of TsAGI], 1991, no. 2494, 40 p.
Hlebnikov V.S. Nekotorye zakonomernosti izmeneniya aerodinamichesko-go soprotivleniya modelej par tel pri sverhzvukovom obtekanii. [Some regularities of aerodynamic drag changes in body-pair models during supersonic streamlining]. Uchenye zapiski CAGI [Scientific notes of TsAGI], 1999, no. 3-4, pp. 69-77.
Rahmatulin H.A. Teoriya osesimmetrichnogo parashyuta. [The theory of the axisymmetric parachute]. Nauchnye trudy Instituta mekhaniki MGU [Scientific works of the Institute of Mechanics of Moscow State University], 1975, no.35, pp. 3-35.
Dneprov I.V., Ponomarev A.T., Rysev O.V., Semushin S.A. Study of parachute loading and deformation processes. Mathematical Models and Computer Simulations, 1993, vol. 5, no. 3, pp. 97-109.
Babakov A.V., Finchenko V.S. CHislennoe issledovanie sverhzvukovogo obtekaniya i silovyh harakteristik spuskaemogo v atmosfere apparata i nahodyashchegosya v ego slede parashyuta. [Numerical study of supersonic streamline and force characteristics of the descent in the atmosphere vehicle and the parachute located in its wake]. Vestnik NPO im. S.A. Lavochkina [Vestnik npo im. S.a. lavochkina], 2022, no. 4 (58), pp. 10-17.
Babakov A.V., Finchenko V.S. Rezul'taty chislennogo opredeleniya vliyaniya nesoosnogo raspolozheniya desantiruemogo ob"ekta i parashyuta v sverhzvukovom potoke gaza na ih aerodinamicheskie harakteristiki i strukturu techeniya. [Results of numerical determination of misaligned location influence of landing object and parachute in supersonic gas flow on their aerodynamic characteristics and flow structure]. Vestnik NPO im. S.A. Lavochkina [Vestnik npo im. S.a. lavochkina], 2023, no. 1 (59). pp. 21-29.
Babakov A. V. Program Package FLUX for the Simulation of Fundamental and Applied Problems of Fluid Dynamics. Computational Mathematics and Mathematical Physics, 2016, vol. 56, no. 6, pp. 1174–1184.
Belocerkovskij O.M., Severinov L.I. Conservative method of fluxes and calculation of streamlining of finite size body by viscous heat-conducting gas. Computational Mathematics and Mathematical Physics, 1973, vol. 13, no. 2, pp. 385-397.
Babakov A.V., Belocerkovskij O.M., Severinov L.I. Numerical investigation of the flow of a viscous heat-conducting gas near a blunt body of finite dimensions. Fluid Dynamics, no. 10, pp. 457-466.
Godunov S.K. Raznostnyj metod chislennogo rascheta razryvnyh reshenij uravnenij gidrodinamiki. [Numerical difference method for calculating discontinuous solutions to the hydrodynamic equations]. Sbornik: Mathematics,1959, vol. 47(89), no. 3, pp. 271–306.
Barth N.J., Jespersen D.C. The design and application of upwind schemes onunstructured meshes. AIAA Paper, 1989, no. 89-0366. DOI: https://doi.org/10.2514/6.1989-366.
Savin G.I., Shabanov B.M., Telegin P.N., Baranov A.V. Joint Supercomputer Center of the Russian Academy of Sciences: Present and Future. Lobachevskii Journal Mathematics, 2019, vol. 40, pp. 1853-1862.
Khartov, V.V., Martynov, M.B., Lukiyanchikov, A.V. Alexashkin, S.N. Conceptual design of “ExoMars-2018” descent module developed by Federal Enterprise Lavochkin association. Solar System. Research, 2015, vol. 49, no. 7, pp. 500–508.


Бабаков В.А. Численное моделирование структуры потока около спускаемого аппарата и расположенного в его следе парашюта при сверхзвуковом движении. Математическое моделирование и численные методы, 2023, № 3, с. 62–79.


Представленные результаты получены на вычислительных ресурсах Межведомственного суперкомпьютерного центра Российской академии наук (МСЦ РАН)


Download article

Количество скачиваний: 63