533.6.011.35 Determination of distributed aerodynamic characteristics of an axisymmetric body of the SOCBT configuration under turbulent flow by a transonic flow

Kharchenko N. A. (Central Aerohydrodynamic Institute (TsAGI)/MEPhI/Moscow Aviation Institute (National Research University)), Nikonov A. M. (Bauman Moscow State Technical University/Central Aerohydrodynamic Institute (TsAGI))


doi: 10.18698/2309-3684-2023-2-100128

The article presents the validation problem of transonic simulation of turbulent airflow of an axisymmetric body of the SOCBT configuration. The main computational complexity of the problem under consideration is the detailed resolution of the flow in the wall region to describe the turbulent boundary layer and further reproduce the experimentally obtained distributions of the pressure coefficient on the surface of the SOCBT configuration body.

Kayser L.D., Whiton F. Surface Pressure Measurements on a Boattailed Projectile Shape at Transonic Speeds. Defense Techical Information Center, 1982, 84 p.
Simon F., Deck S., Guillen P., Cayzac R., Sagaut P., and Merlen A. RANS/LES simulations of projectiles with and without rotation in the subsonic and transonic regimes. 23rd International Symposium on Ballistics, 2007, pp. 755 – 763.
Tai C.H., Tian Y.L. High-resolution upwind viscous flow solver on SOCBT configuration with turbulence models. Finite Elements in Analysis and Design, 1994,vol. 18, pp. 237 – 257.
M. Kridi A.F. Numerical Computations of Transonic Critical Aerodynamic Behavior of a Realistic Artillery Projectile. Al-Khwarizmi Engineering Journal,2009, vol. 5, no. 5, pp. 42 – 52.
Kharchenko N.A. CHislennoe modelirovanie aerotermodinamiki vysokoskorostnyh leta-tel'nyh apparatov. Dissertaciya na soiskanie uchenoj stepeni kandidata fiziko-matematicheskih nauk: 01.02.05 [Numerical modeling of aerothermodynamics of high-speed aircraft. Thesis for the degree of candidate of physical and mathematical sciences: 01.02.05]. Moscow, MIPT, Phystech, 2021, 112 p.
Bessonov O.A., Kharchenko N.A. Software platform for supercomputer simulation of aerothermodynamic problems. Programmnaya ingeneria, 2021, vol. 12, no. 6, pp. 302 – 310.
Kharchenko N., Kotov M. Aerothermodynamics of the Apollo-4 spacecraft atearth atmosphere conditions with speed more than 10 km/s. Journal of Physics: Conference Series, 2019, vol. 1250, no. 012012. doi: 10.1088/1742-6596/1250/1/012012.
Kharchenko N.A., Nosenko N.A. Numerical simulation high-speed flow around a cylindrical-conical body and a double cone. Mathematical modeling and computational methods, 2022, no. 3, pp. 33 – 46.
Menter F.R., Kuntz M., Langtry R. Ten Years of Industrial Experience with theSST Turbulence Model. Turbulence, Heat and Mass Transfer 4: Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer, 2003, pp. 625 – 632.
Kharchenko N.A., Nikonov A.M., Nosenko N.A. CHislennoe reshenie zadachi turbulentnogo obtekaniya vysokoskorostnym potokom cilindricheski – konicheskogo tela [Numerical solution of the problem of turbulent high-velocity flow around a cylindrical-conical body]. XXXIII nauchno-tekhnicheskaya konferenciya po aerodinamike [XXXIII Scientific and Technical Conference on Aerodynamics], CAGI [TsAGI], 2022, pp. 101 – 102.
Liou M.-S. A sequal to AUSM: AUSM+. Journal of Computational Physics, 1996, vol. 129, issue 2, pp. 364 – 382.
Godunov S.K. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Matematicheskii sbornik, 1959, vol. 47, no. 3, pp. 271 – 306.
Kitamura K. Advancement of Shock Capturing Computational Fluid Dynamics Methods: Numerical Flux Functions in Finite Volume Method. Springer, 2020,142 p.
Chen SS, Cai FJ, Xue HC, Wang N., Yan C. An improved AUSM-family scheme with robustness and accuracy for all Mach number flows. Appllied Mathematical Modelling, 2020, vol. 77, no. 2, pp. 1065 – 1081.
Kryukov I.A., Ivanov I.E., Larina E.V. Programmnyj kompleks rascheta vysokoskorostnyh techenij hySol [Software package HySol for the Numerical Simulation for High-Speed Flows]. Fiziko-himicheskaya kinetika v gazovoj dinamike[Physical and chemical kinetics in gas dynamics], 2021, vol. 22, no. 1, 28 p.
Michalak K., Ollivier-Gooch C. Limiters for unstructured higher-order accuratesolutions of the Euler equations. 46th AIAA Aerospace Sciences Meeting, 2008, 14p. doi: https://doi.org/10.2514/6.1990-13.
Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A. Application of RKDG method for computational solution of three-dimensional gas-dynamic equations with non-structured grids. Mathematical modeling and computational methods, 2015, № 4, c. 75 – 91.
Dimitrienko Yu.I., Koryakov M.N., Yurin Yu.V., Zakharov A.A., Sborshchikov S.V., Bogdanov I.O. Coupled modeling of high-speed aerothermodynamics and internal heat and mass transfer in composite aerospace structures. Mathematical modeling and computational methods, 2021, no. 3, pp. 42 – 61

Харченко Н.А., Никонов А.М. Определение распределенных аэродинамических характеристик осесимметричного тела конфигурации SOCBT при турбулентном обтекании трансзвуковым потоком. Математическое моделирование и численные методы, 2023, № 2, с. 100–128.

Download article

Количество скачиваний: 56