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В работе представлена валидационная задача трансзвукового моделирования тур-

булентного обтекания воздушным потоком осесимметричного тела конфигурации 

SOCBT. Основной вычислительной сложностью рассматриваемой задачи является 

подробное разрешение течения в пристеночной области для описания турбулент-

ного пограничного слоя и дальнейшего воспроизведения экспериментально получен-

ных распределений коэффициента давления на поверхности тела конфигурации 

SOCBT.  
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Введение. Целью серии экспериментальных исследований, прово-

димых в центре авиационных исследований NASA Langley Research 

Center [1] на установке 8-Foot Transonic Pressure Tunnel, являлось со-

здание валидационного базиса, используемого для подтверждения в 

задачах трансзвукового моделирования достоверности вычислитель-

ных моделей на околозвуковых скоростях [2-4]. В результате прове-

дённых экспериментальных исследований [1] в широком диапазоне 

трансзвуковых скоростей и углов атаки были получены распределения 

коэффициента давления при обтекании турбулентным потоком осе-

симметричного тела конфигурации SOCBT – Secant-Ogive-Cylinder-

BoatTail. 

В данной работе валидационная задача трансзвукового моделиро-

вания турбулентного обтекания воздушным потоком тела конфигура-

ции SOCBT численно решалась в трёхмерной постановке. Основной 

целью данного исследования является воспроизведение эксперимен-

тально полученных распределений коэффициента давления на поверх-

ности осесимметричного тела. 
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Математическая постановка задачи. Расчёты турбулентного 
обтекания трансзвуковым потоком тела конфигурации SOCBT прово-
дились с использованием компьютерного кода ГРАТ [5]. Компьютер-
ный код ГРАТ предназначен для суперкомпьютерного моделирования 
аэротермогазодинамики высокоскоростных реагирующих течений с 
сильными ударными волнами [6-8]. В основе разработанного компью-
терного кода лежит численное решение трёхмерной нестационарной 
системы уравнений движения вязкого, теплопроводного, химически 
реагирующего газа [5] и дополненной двухпараметрической RANS 

моделью турбулентности k   SST [9, 10]. Система уравнений Навье 
— Стокса, выражающая законы сохранения массы, импульсов и пол-
ной энергии, записывается в следующем виде: 
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где w  — столбец консервативных переменных, F  — вектор конвек-

тивного потока, G  — вектор вязкого потока. 

Компоненты тензора вязких напряжений и вектора теплового по-
тока определяются как: 
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В используемой двухпараметрической модели Ментера SST 

(Shear Stress Transport) уравнения переноса кинетической энергии k  и 

удельной скорости диссипации турбулентных пульсаций   записыва-

ются в следующем виде: 
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где U — вектор скорости. 

Турбулентная вязкость определяется соотношением: 
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Член генерации турбулентности имеет вид: 

  2min ,10T kP k    , (4) 

и определяется через величину тензора завихренности: 
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Функции диффузионных членов в уравнениях для k  и   имеют 

вид: 
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Функции 1F  и 2F  определяются как: 
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где d  — расстояние до ближайшей стенки. 

Константы SST модели определяются через функцию смешения 

моделей k   и k  : 
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В задачах высокоскоростного моделирования, не требующих 

учёта физико-химических процессов в газе, решаемая система уравне-

ний замыкается термическим и калорическим уравнениями состояния 

совершенного газа: 

  γ 1p e  , ve C T , (8) 

где 
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Для расчёта свойств переноса, коэффициентов вязкости и тепло-

проводности, использовались соотношения: 
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где принимаются постоянными: 

 Pr 0.72 , Pr 0.9T  , γ 1.4
Дж

286.7
кг К

R

M

   
   

   
. 

Численный алгоритм решения задачи. Численное интегрирова-

ние системы уравнений газовой динамики проводилось с использова-

нием модифицированного метода AUSM+ [11]. Используемый для 

численного интегрирования метод AUSM+ является методом расщеп-

ления потоков на конвективную и акустическую составляющие в за-

висимости от числа Маха. Такой подход является альтернативой ме-

тодам, основанным на идеи вычисления потоков через грани конеч-

ного объема из решения задачи о распаде произвольного разрыва, 

предложенной С.К. Годуновым [12]. 
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Численный поток методом AUSM+ определяется из соотношения 
[13]: 
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Расщепление потока на вклады конвекции и давления выражается 
посредством представления числа Маха в виде двух состояний: 
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Конвективная и акустическая составляющие расщепленного по-

тока аппроксимируются полиномами четвертого и третьего порядка: 
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Для сохранения устойчивости численной схемы при расчетах те-
чений с большими числами Маха в выражения для вкладов конвекции 
и давления добавляются диффузионные слагаемые [14], обеспечиваю-
щие дополнительную диссипацию для подавления численной не-
устойчивости сильных ударных волн: 
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где функции g  и f  определяются как: 
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Число Маха и скорость звука в описанном методе определяются 
как: 
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Для получения более высокого порядка точности численного ре-
шения по пространству задается линейное распределение газодинами-
ческих параметров внутри ячейки [15]: 
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Линейная реконструкция проводится по неконсервативным пере-
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метров, используемые для вычисления потоков через грани конечного 
объема, определяются на каждой грани из задаваемого распределения, 
что приводит к схеме второго порядка в областях, где решение глад-
кое. Но при этом для сохранения свойства монотонности численной 
схемы на газодинамических разрывах необходимо использовать огра-
ничитель задаваемого распределения [15]. 

Коэффициент ограничения задаваемого распределения вычисля-
ется из соотношения: 
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где с индексами « l » и « k » значения функций в центрах расчётной и 

соседней ячеек, а с индексом « j » значения функций, вычисленные в 

центре j -ой грани. 

Но отсутствие дифференцируемости записанной функции – огра-
ничителя приводит к ухудшению монотонности схемы. Обеспечить 
монотонность численной схемы позволило использование дополни-
тельной дифференцируемой функции – ограничителя [16]: 
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В итоге расчётные соотношения для численного интегрирования 
решаемой системы уравнений методом конечного объёма записыва-
ются в следующем виде 
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где N  — количество граней в конечном объеме, n  — номер времен-

ного слоя, а l  — номер расчётной ячейки. 

Шаг по времени t l  определяется следующим образом: 
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где CFL — число Куранта, сl  — скорость звука, lh  — отношение объ-

ёма к сумме площадей граней расчётной ячейки. 

Для расчета вязких слагаемых необходимо вычислять производные 

скорости и температуры по пространству в центрах граней конечного 

объема. Вычисление производных основывалось на численном инте-

грирование по конечному объёму, состоящему из двух смежных ячеек, 

относительно центра общей грани и является решением системы урав-

нений: 
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где        X ,  Y ,  Z ,  F ,j j l j j l j j l j j lx x y y z z f f         
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Изложенный численный метод явный и имеет первый порядок ап-

проксимации по времени и второй порядок аппроксимации по про-

странству. Численное интегрирование системы уравнений газовой ди-

намики проводилось до установления стационарного решения. 

Исходные данные для численного моделирования. Для прове-

дения аэродинамических расчётов была создана трёхмерная поверх-

ность осесимметричного тела конфигурации SOCBT. Геометрические 

размеры исследуемого объекта представлены в работе [1]. 
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Численное моделирование трёхмерного поля течения проводилось 

с использованием неструктурированных сеток, важным преимуще-

ством которых является автоматизация построения для сложных гео-

метрических форм [17, 18]. Сгущение расчётной сетки осуществля-

лось вблизи поверхности исследуемого объекта для более детального 

описания поля течения в пограничном слое, что позволило в большей 

части пристеночной области обеспечить значение величины    2y  . 

Трёхмерная сетка состояла из тетраэдральных и призматических эле-

ментов, общее количество ячеек которой в расчётной области соста-

вило 6 703 960. 

На поверхности обтекаемого тела задавались граничные условия 

прилипания и отсутствия турбулентных пульсаций на стенке. Расчёты 

проводились с теплоизолированной поверхностью, вследствие дли-

тельной продолжительности рабочего режима в эксперименте. 

Исходные данные, используемые для численного моделирования 

обтекания трансзвуковым потоком осесимметричного тела конфигу-

рации SOCBT, приведены в таблице 1 [1]. 

 
Таблица 1 

Параметры невозмущенного потока 

M  1.20 1.10 0.98 0.96 

P , атм 0.40 0.47 0.54 0.55 

T , K 272 272 272 272 

 

Результаты численного моделирования. На рисунках 2 — 17 

представлены распределения числа Маха, температуры и коэффици-

ента давления, полученные в результате численного моделирования 

четырех режимов турбулентного обтекания трансзвуковым потоком 

тела конфигурации SOCBT под двумя углами атаки — 6 и 10 градусов. 

Как видно на представленных графиках (рисунки 3, 5, 7, 9, 11, 13, 15 и 

17), полученные в результате численного моделирования распределе-

ния коэффициента давления на поверхности тела конфигурации 

SOCBT хорошо соответствуют экспериментальным данным [1]. 

Как видно на представленных графиках (рисунки 4, 6, 8, 10, 12, 

14, 16 и 18), полученные в результате численного моделирования рас-

пределения коэффициента давления на поверхности тела конфигура-

ции SOCBT хорошо соответствуют экспериментальным данным [1]. 
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Рис. 1. Расчетная сетка для осесимметричного тела конфигурации  

SOCBT 
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Рис. 2. Распределение числа Маха и температуры (К) в окрестности тела  

конфигурации SOCBT, M = 0.96, угол атаки 6    
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Рис. 3. Распределение коэффициента давления в окрестности и на поверхности 

тела конфигурации SOCBT, M = 0.96, угол атаки 6    
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Рис. 4. Распределение числа Маха и температуры (К) в окрестности тела  

конфигурации SOCBT, M = 0.96, угол атаки 10    
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Рис. 5. Распределение коэффициента давления в окрестности и на поверхности 

тела конфигурации SOCBT, M = 0.96, угол атаки 10    
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Рис. 6. Распределение числа Маха и температуры (К) в окрестности тела  

конфигурации SOCBT, M = 0.98, угол атаки 6    
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Рис. 7. Распределение коэффициента давления в окрестности и на поверхности 

тела конфигурации SOCBT, M = 0.98, угол атаки 6    
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Рис. 8. Распределение числа Маха и температуры (К) в окрестности тела  

конфигурации SOCBT, M = 0.98, угол атаки 10    
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Рис. 9. Распределение коэффициента давления в окрестности и на поверхности 

тела конфигурации SOCBT, M = 0.98, угол атаки 10    
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Рис. 10. Распределение числа Маха и температуры (К) в окрестности тела 

конфигурации SOCBT, M = 1.1, угол атаки 6    
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Рис. 11. Распределение коэффициента давления в окрестности и на  

поверхности тела конфигурации SOCBT, M = 1.1, угол атаки 6    
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Рис. 12. Распределение числа Маха и температуры (К) в окрестности тела 

конфигурации SOCBT, M = 1.1, угол атаки 10    
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Рис. 13. Распределение коэффициента давления в окрестности и на  

поверхности тела конфигурации SOCBT, M = 1.1, угол атаки 6    
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Рис. 14. Распределение числа Маха и температуры (К) в окрестности тела 

конфигурации SOCBT, M = 1.2, угол атаки 6    
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Рис. 15. Распределение коэффициента давления в окрестности и на поверхности 

тела конфигурации SOCBT, M = 1.2, угол атаки 6    
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Рис. 16. Распределение числа Маха и температуры (К) в окрестности тела 

конфигурации SOCBT, M = 1.2, угол атаки 10    
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Рис. 17. Распределение коэффициента давления в окрестности и на поверхно-

сти тела конфигурации SOCBT, M = 1.2, угол атаки 10    

 
Заключение. Результатом проведённых аэродинамических расчё-

тов турбулентного обтекания трансзвуковым потоком тела конфигу-
рации SOCBT компьютерным кодом ГРАТ [5] стало получение полей 
газодинамических функций для четырех экспериментальных режимов 
с двумя углами атаки. Основным результатом выполненного исследо-
вания стало хорошее согласие численно полученных распределений 
коэффициента давления на поверхности осесимметричного тела с экс-
периментальными данными [1]. 
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The article presents the validation problem of transonic simulation of turbulent airflow of 

an axisymmetric body of the SOCBT configuration. The main computational complexity of 

the problem under consideration is the detailed resolution of the flow in the wall region to 

describe the turbulent boundary layer and further reproduce the experimentally obtained 

distributions of the pressure coefficient on the surface of the SOCBT configuration body. 
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