533.6.011.5 Heat transfer modeling on the surface of a sphere in a gas flow

Kotenev V. P. (Bauman Moscow State Technical University), Sysenko V. A.

SUPERSONIC GAS FLOW, THREE-DIMENSIONAL GAS FLOWS, SONIC POINT, SPECIFIC HEAT FLOW


doi: 10.18698/2309-3684-2023-2-9099


The simple analytical formula for calculation of laminar specific heat flow (divided by corresponding value at the critical point) brought to sphere surface streamlined by supersonic gas flow are received in this work. The analysis of the results shows that the use of the presented formula gives the values of the specific heat flow with greater accuracy than the known approximate formulas. The comparing of the relative heat flow with the accurate computational results of solving the Navier-Stokes equations also confirm the effectiveness of the presented method. It is proposed to formulate a special rule of local spheres for a quick evaluation of the specific heat flow on the surfaces of other blunted bodies with different generators in the future.


Brykina I.G., Sakharov V.I. Comparison of approximate analytical and numerical solutions for heat fluxes in viscous supersonic flow past a body. Fluid Dynamics, 1996, vol. 31, no. 1, pp. 125–132.
Brykina I.G., Metody racheta teploperedachi i treniya pri prostransvennom giperzvukovom laminarnom obtekanii tek vo vsem diapazone chisel Rejnol’dsa: diss. d-ra. fiz.-mat. nauk. [Methods of calculation of heat transfer in dimensional hypersonic laminar flow in the whole range of Reynolds numbers: diss. Dr. Sc.], Moscow, 2013, 320 p.
Kalugin V. T. Aerodynamica organov upravleniya poletom letatelnyh apparatov[Aerodynamics of flight controls of aircraft]. Moscow, Bauman Moscow State Technical University, 2004, 688 p.
Eleuterio F. T. Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer-Verlag Berlin Heidelberg, 2009, 724 p.
Kovenya V. M., Chirkov D. V. Metody konechnih raznostey i konechnih ob’emov dlya resheniya zadach matematicheskoy fiziky [Finite difference method and finite volume method for solving tasks of mathematical physics]. Novosibirsk: NSU Publ., 2013, 86 p.
Dimitrienko Yu. I., Koryakov M. N., Zakharov A. A. RKDG method application for numerical solving three-dimensional equations of gas dynamics on unstructured grids. Mathematical modeling and computational methods. 2015, no. 4, pp. 75-91.
Tumin A., Wang X., Zhong H. Numerical simulation and theoretical analysis of perturbation in hypersonic boundary layer. AIAA JOURNAL, 2011, vol. 49, no. 3, pp. 463-471.
Kotenev V.P. Exact relation for determining the pressure distribution on a sphere at an arbitrary mach number in a supersonic incoming flow. Mathematical Models and Computer Simulations, 2015, vol. 2, no. 2, pp. 128–133.
Kotenev V.P., Bulgakov V.N., Ozhgibisova Y.S. Modification of Pohlhausen method for calculating heat transfer on blunt bodies. Маthematical Modeling and Coтputational Methods, 2016, no. 3, pp. 33–52.
Lunev V.V. Techenie real'nyh gazov s bol'shimi skorostyami [Flow of real gases with high velocities]. Moscow, Fizmatlit Publ., 2007, 327 p.
Kotenev V. P. Determining the position of a sound point on the surface of a blunt body. 2011, Herald of the Bauman Moscow State Technical University. Series natural sciences, special issue “Mathematical Modeling”, pp. 150–153.
Zemlyanskij B. A., Lunev V. V., Vlasov V. I. Konvektivnyj teploobmen letatel'nyh_apparatov [Convective heat transfer of aircraft]. Moscow, Fizmatlit publ., 2014, 380 p.


Котенев В.П., Сысенко В.А. Новая зависимость профиля энтальпии в модели пограничного слоя. Математическое моделирование и численные методы, 2023, № 2, с. 90–99



Download article

Количество скачиваний: 76