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Предложена простая аналитическая зависимость для определения ламинарного 

относительного теплового потока (отнесенного к соответствующей величине в 

точке торможения потока), подводимого к поверхности сферы, обтекаемой сверх-

звуковым потоком газа. Анализ результатов показал, что использование предло-

женной формулы дает более точные приемлемые для практики результаты, чем 

другие известные приближенные зависимости. Сравнение относительного тепло-

вого потока с точными численными результатами в рамках уравнений Навье-

Стокса также свидетельствует об эффективности предложенного подхода. В 

дальнейшем предполагается разработать специальное правило местных сфер для 

быстрой оценки теплового потока на поверхности других затупленных тел с до-

статочно произвольной образующей.  

 

Ключевые слова: сверхзвуковой поток, трехмерные течения газа, звуковая точка, 

тепловой поток 

 

Введение. При сверхзвуковом обтекании затупленных тел подво-

димые к их поверхности относительные тепловые потоки для холод-

ной стенки при достаточно больших числах Рейнольдса мало зависят 

от параметров внешнего потока. В этом случае используются аналити-

ческие формулы для определения тепловых потоков, зависящие от 

геометрии обтекаемого тела и давления на его поверхности [1, 2], ча-

сто задаваемого по формуле Ньютона или с помощью аппроксимаци-

онных зависимостей [3]. Такое задание давления может приводить к 

потере точности соответствующих формул для теплового потока. Для 

распределения давления используются также результаты численных 

расчетов [4,5,6,7], требующих существенных временных затрат. В дан-

ной статье получены аналитические зависимости для определения 

теплового потока на сфере с использованием точной формулы [8], опи-

сывающей распределение давления на ее поверхности. 

Модель для расчета теплового потока к поверхности сферы. 

Согласно [9] конвективный тепловой поток к поверхности сферы 

можно представить в виде 
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Здесь нижний индекс «0» соответствует параметрам на стенке (по-

верхность обтекаемого тела), а «1» — параметрам на границе погра-

ничного слоя,   — угол между осью тела и касательной к телу в рас-

сматриваемой точке, 1  — плотность, 1u  — проекция вектора скоро-

сти на направление  вдоль образующей тела, ( )R   — радиус кривизны 

образующей тела (постоянный для сферы), 0( )   — коэффициент ди-

намической вязкости, ( )   — некоторая функция, имеющая размер-

ность энтальпии 1h  или 2
1

u . 

Примем, что температура стенки является постоянной величиной 

(т.е. 0  также не меняется) и что 1( ) ( )h    . Тогда для относитель-

ного теплового потока получим следующую зависимость: 
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  (1) 

где 00Q  — значение теплового потока в точке торможения, H  — пол-

ная энтальпия (энтальпия торможения). 

Моделирование распределение давления. Выражение для распре-

деления давления на поверхности сферы получено в [8]: 
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
 — положение звуковой точки, 

0P   — давление торможения,   — по-

казатель адиабаты, равный 1,4 для совершенного газа. Положение звуко-
вой точки определяется в работах [10, 11]. Например, для чисел Маха в 
набегающем потоке более 2,5 положение звуковой точки рассчитывается 
по формуле из работы [10]: 
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Более универсальный подход изложен в [11]. 
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Применение формулы (2) предполагает, что давление найдено по мо-

дели невязкого обтекания. При достаточно больших числах Рейнольдса 

распределения давления, полученные из решения уравнений Навье-

Стокса и Эйлера, близки. 

Формула (2) позволяет вычислить параметры на границе погранич-

ного слоя: 
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Вычисление относительного теплового потока. Пользуясь фор-

мулой (3), запишем выражение для 1du

d
: 
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В точке торможения 
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Тогда 
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Подставляя (2), (3), (4) в формулу (1), получаем основную формулу 

для расчета относительного теплового потока на сфере 
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Если входящие в (1) производные аппроксимировать с помощью 

центральных разностей, то с учетом (2), (3) получаем итоговое выра-

жение для относительного теплового потока 
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где обозначено 
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—  относительное давление. 

Анализ результатов. Перейдем к анализу результатов. Для при-

мера приведем результаты расчетов по формуле (5) для трех значений 

чисел Маха: 4,11M   (рис. 1), 6M   (рис. 2) и 10M   (рис. 3). На 

этих же рисунках приведены данные, полученные в результате чис-

ленного решения уравнений Навье-Стокса [1, 2], а также расчет по 

аналитической формуле из работ [1, 2]. При этом в аналитической фор-

муле использовалось распределение давления, полученное путем чис-

ленного расчета в рамках уравнений Навье-Стокса, что уже подразу-

мевает большие временные затраты.  

На рисунке 1 решение уравнений Навье-Стокса и аналитическая 

зависимость работ [1, 2] соответствуют режиму обтекания: 4,11M   

при числе Рейнольдса 500Re  , отношении постоянной температуры 

стенки к температуре торможения 0,25wT  , числе Прандтля 

0,72Pr  . 

На рисунке 2 решение уравнений Навье-Стокса и аналитическая 

зависимость работ [1, 2] соответствуют режиму обтекания: 6M   

при 3500Re  , 0,35wT  , 0,72Pr  . 

На рисунке 3 решение уравнений Навье-Стокса и аналитическая 

зависимость работ [1, 2] соответствуют режимам обтекания: 10M   

при 500Re  , 0,25wT  , 0,72Pr   (кривая 1) и 3500Re  , 0,35wT 

, 0,72Pr   (кривая 2). 

Кроме того, на всех рисунках приведено универсальное распреде-

ление теплового потока, предложенное в работах [10, 12]: 
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00

0,55 0,45cos 2
Q

Q
   

  — центральный угол сферы. 

В работах [10, 12] утверждается, что данное распределение хорошо 

зарекомендовало себя в диапазоне 7 25M  . 

Из представленных сравнений расчетных данных с данными, по-

лученными путем численного решения уравнений Навье-Стокса [1,2], 

видно, что применение формулы (5), полученной в данной статье, поз-

воляет получить результат с максимальной относительной погрешно-

стью, не превышающей 10% для всех вариантов, кроме самого «разре-

женного» режима набегающего потока 10M   при 500Re  , 

0,25wT  , 0,72Pr  , для которого в случае малых значений углов 

встречи потока с поверхностью тела максимальная погрешность мо-

жет достигать 30 % (рисунок 3).  В то же время, приближенные фор-

мулы из работ [1, 2, 10, 12], имеют заметно большую погрешность. 

Применение же формулы [10, 12] для умеренных чисел Маха набега-

ющего потока. дает значения теплового потока, наиболее сильно рас-

ходящиеся с результатами расчетов в рамках уравнений Навье-Стокса 

и предлагаемой в данной работе зависимостью. 

 
Рис. 1 Распределение теплового потока на сфере при числе Маха 4,11M


 , 

полученное по формуле из работы [1, 2] (точки), по формуле (5) данной работы 

(сплошная линия), по численному решению уравнений Навье-Стокса [1, 2] (пунк-

тир), по универсальной формуле [10, 12] (штрих-пунктир) (  – центральный угол) 
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Рис. 2 Распределение теплового потока на сфере при числе Маха 6M


 , по-

лученное по формуле из работы [1, 2] (точки), по формуле (5) данной работы 

(сплошная линия), по численному решению уравнений Навье-Стокса [1, 2] (пунк-

тир), по универсальной формуле [10, 12] (штрих-пунктир) (  – центральный угол) 

1

0,9

0,8

0, 7

0, 6

0,5

0, 4

0,3

0, 2

0,1

0

00Q Q

0         10          20          30          40          50          60          70          80       90




В.П. Котенев, В.А. Сысенко 

96 

 

 
Рис. 3 Распределение теплового потока на сфере при числе Маха 10M


 , по-

лученное по формуле из работы [1, 2] (точки), по формуле (5) данной работы 

(сплошная линия), по численному решению уравнений Навье-Стокса [1, 2] (пунк-

тир), по универсальной формуле [10, 12] (штрих-пунктир) (  – центральный угол) 
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Вывод. Можно сделать вывод о том, что предложенная в данной 
работе формула практически точно описывает распределение относи-
тельного теплового потока к поверхности сферы при различных зна-
чениях числа Маха набегающего потока. Данный подход может быть 
использован для начального распределения при применении «тяже-
лых» пакетов прикладных программ, а также быстрой оценки тепло-
вого потока к поверхности сферы, а в дальнейшем и для других форм 
тел. 
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The simple analytical formula for calculation of laminar specific heat flow (divided by 

corresponding value at the critical point) brought to sphere surface streamlined by super-

sonic gas flow are received in this work. The analysis of the results shows that the use of 

the presented formula gives the values of the specific heat flow with greater accuracy than 

the known approximate formulas. The comparing of the relative heat flow with the accurate 

computational results of solving the Navier-Stokes equations also confirm the effectiveness 

of the presented method. It is proposed to formulate a special rule of local spheres for a 

quick evaluation of the specific heat flow on the surfaces of other blunted bodies with dif-

ferent generators in the future. 
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