532.5+519.6 Mathematical modeling of laminar and turbulent filtration processes of piquid incompressible medium in porous mesh materials

Gordonov A. O. (АО ГНЦ "Центр Келдыша"), Laptev I. V. (АО ГНЦ "Центр Келдыша"), Sidorenko N. Y. (АО ГНЦ "Центр Келдыша"/Moscow Institute of Physics and Technology), Ivanov M. Y., Malahov A. S., Resh G. F.

MATHEMATICAL MODELING, COMPUTATIONAL FLUID DYNAMICS, ENGINEERING ANALYSIS SYSTEM, CONTROL VOLUME METHOD, LATTICE BOLTZMANN METHOD (LBM), POROUS MESH MATERIAL, VISCOUS INCOMPRESSIBLE FLUID, HYDRAULIC RESISTANCE


doi: 10.18698/2309-3684-2023-2-6789


The problems of mathematical modeling of three–dimensional laminar and turbulent motion of a viscous incompressible fluid in multilayer permeable structures – porous mesh materials are considered. Each layer of the material is a woven metal mesh with square cells of micron sizes. Porous mesh materials are widely used in space, chemical, oil and gas, nuclear and other industries, for example, as hydraulic filters. Such materials have a complex internal structure and a variety of possible geometric configurations. Therefore, in the general case, the nature of the functional dependence of the hydraulic resistance that a material sample exerts on the flow of fluid flowing in its pore channels from the Reynolds number is not known. To determine this dependence on the existing material, as well as to create a material with a predetermined hydraulic resistance, computational fluid dynamics tools were used. The domestic engineering analysis system "Logos" and the author's program code developed in Keldysh Research Center were used. The physical parameters of liquid mass transfer in a porous filter material and its hydraulic resistance are determined by the methods of control volumes on an unstructured computational grid for integrating the Navier-Stokes equations and Lattice Boltzmann Method. It is established that the theoretical methods used allow us to estimate from above the functional dependence of the hydraulic resistance of a porous mesh material on the Reynolds number in the range of values from 0.01 to 500. To verify the mathematical model an experimental setup was made with the help of which a cycle of hydraulic spills of sample of porous mesh material was performed. The numerical solutions obtained are consistent with the available analytical dependencies obtained in the works of domestic and foreign scientists and the results of experimental studies.


Belov S.V., Vityaz' P.A., SHeleg V.K. et. al. Poristye pronicaemye materialy [Porous permeable materials]. Moscow, Metallurgiya [Metallurgy], 1987, 333 p.
Tret'yakov A.F. Issledovanie vliyaniya konstruktivnyh i tekhnologicheskihparametrov na udel'nuyu prochnost' poristyh setchatyh materialov [Study of the Influence of Design and Technological Parameters on the Specific Strength of Porous Mesh Materials]. Izvestiya vysshih uchebnyh zavedenij. Mashinostroenie[News of higher educational institutions. Engineering], 2017, no. 12, pp. 30-36.
Semenov YU.P., Lozino-Lozinskij G.E., Lapygin V.L., Timchenko V.A. et. al.Mnogorazovyj orbital'nyj korabl' «Buran» [Reusable orbital ship "Buran"]. Moscow, Publishing House «Innovative Engineering», 1995, 448 p.
Bagrov V.V., Kurpatenkov A.V., Polyaev V.M., Sincov A.L., Suhostavec V.F. Kapillyarnye sistemy otbora zhidkosti iz bakov kosmicheskih letatel'nyh apparatov. Moscow, UNPC «Energomash», 1997, 328 p.
Aleksandrov L.G., Konstantinov S.B., Korol'kov A.V., Sapozhnikov V.B. Toplivnyj bak s kapillyarnym vnutribakovym ustrojstvom kosmicheskoj dvigatel'noj ustanovki [Fuel tank with a capillary in-tank device of a space propulsion system]. Vestnik NPO imeni S.A. Lavochkina [Bulletin of NPO named after S.A. Lavochkin], 2021, no. 4, pp. 15-21.
Sapozhnikov V.B., Krylov V.I., Novikov YU.M., YAgodnikov D.A. Nazemnaya otrabotka kapillyarnyh fazorazdelitelej na osnove kombinirovannyh poristosetchatyh materialov dlya toplivnyh bakov zhidkostnyh raketnyh dvigatelej verhnih stupenej raket-nositelej, razgonnyh blokov i kosmicheskih apparatov[Ground testing of capillary phase separators based on combined porous-mesh materials for fuel tanks of liquid-propellant rocket engines of the upper stages of launch vehicles, upper stages and spacecraft]. Inzhenernyj zhurnal: nauka i innovacii [Engineering journal: science and innovation], 2013, no. 4, pp. 1-16.
Polyaev V.M., Genbach A.A. Primenenie poristoj sistemy v energeticheskih ustanovkah [Application of the porous system in power plants]. Promyshlennaya energetika [Industrial energy], 1992, no. 1, pp. 40-43.
Moskalev P.V., SHitov V.V. Matematicheskoe modelirovanie poristyh struktur[Mathematical modeling of porous structures]. Moscow, Fizmatlit publ., 2007, 120 p.
Armour J.C., Cannon J.N. Fluid Flow Through Woven Screens. AIChE Journal, 1968, vol. 14, no. 3, pp. 415-420.
Avraamov N.I., Korol'kov A.V., Maslov V.A., Sapozhnikov V.B. Matematicheskaya model' kombinirovannogo poristo-setchatogo materiala kak fazorazdelitelya [Mathematical model of a combined porous-mesh material as a phase separator]. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2019, no. 3, pp. 4-16. DOI: 10.18698/0236-3941-2019-3-4-16.
Spiridonov V.S., Novikov YU.M., Bol'shakov V.A. Ekspluatacionnyeharakteristiki fil'troval'nyh peregorodok iz provolochnyh setok s yachejkami mikronnyh razmerov [Performance characteristics of filtering partitions made of wire meshes with micron-sized cells]. Bezopasnost' v tekhnosfere [Safety in technosphere], 2013, no. 6, pp. 52-57.
Pelevin V.F. Gidravlicheskoe soprotivlenie poristyh metallov [Hydraulic resistance of porous metals]. BMSTU journal of mechanical engineering, 2016, no. 2, pp. 42-52.
Polyaev V.M., Suhostavec V.F., Novikov A.V. CHislennoe modelirovanie vzaimodejstviya dvuhmernogo potoka vyazkoj neszhimaemoj zhidkosti s poristymi fazorazdelitelyami [Numerical simulation of the interaction of a two-dimensional flow of a viscous non-compressible fluid with porous phase separators]. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 1992, no. 3, pp. 83-88.
Fischer A., Gerstmann J. Flow Resistance of Metallic Screens in Liquid, Gaseous and Cryogenic Flow. Materials of 5th European Conference for Aeronautics and Space Sciences (EUCASS), 2013, pp. 1-12.
Middelstadt F., Gerstmann J. Numerical Investigations on Fluid Flow through Metal Screens. Materials of 5th European Conference for Aeronautics and Space Sciences (EUCASS), 2013, pp. 1-15.
Bommisetty R.V.N., Joshi D.S., Kollati V.R. Flow Loss in Screens: A Fresh Look at Old Correlation. Journal of Mechanics Engineering and Automation, 2013, no. 3. pp. 29-34.
Laptev I.V., Gorodnov A.O., Sidorenko N.YU., Resh G.F., Ivanov M.YU., Malahov A.S. Komp'yuternoe modelirovanie prostranstvennyh techenij vyazkoj neszhimaemoj zhidkosti v pronicaemyh setchatyh materialah [Computer modeling of spatial flows of a viscous incompressible fluid in permeable mesh materials]. Aktual'nye problemy kosmonavtiki: Trudy XLVII akademicheskih chtenij po kosmonavtike, posvyashchyonnyh pamyati akademika S.P. Korolyova i drugih vydayushchihsya otechestvennyh uchyonyh-pionerov osvoeniya kosmicheskogo prostranstva (23-27 yanvarya 2023 g.): sbornik tezisov [Actual problems of astronautics: Proceedings of the XLVII academic readings on astronautics, dedicated to the memory of academician S.P. Korolev and other outstanding domestic scientists-pioneers of space exploration (January 23-27, 2023): collection of abstracts]. Moscow, BMSTU, 2023 (in the press).
Dimitrienko Yu. I., Bogdanov I.O. Multiscale modeling of liquid binder filtration processes in composite structures manufactured by RTM. Mathematical modeling and computational methods. 2017, no. 2, pp. 3-27.
Ivanov M.YU., Resh G.F., Novikov A.E., Kuranov E.G. Sposob otbora zhidkostiiz yomkosti s ispol'zovaniem adaptivnyh inercionno-kapillyarnyh ustrojstv. Aktual'nye problemy kosmonavtiki: Trudy XLII akademicheskihchtenij po kosmonavtike, posvyashchyonnyh pamyati akademikaS.P. Korolyova i drugih vydayushchihsya otechestvennyh uchyonyh-pionerov osvoeniya kosmicheskogo prostranstva (23-26 yanvarya 2018 g.) [Actual problems of astronautics: Proceedings of the XLII academic readings on astronautics, dedicated to the memory of Academician S.P. Korolev and other outstanding domestic scientists-pioneers of space exploration (January 23-26, 2018)]. Moscow, BMSTU, 2018, pp. 421-422.
Ivanov M.Yu., Resh G.F. Theoretical Justification of Experimental Investigation of Gravity-Capillary Method for Gas-Liquid Mixtures Intake. Journal of Physics: Conference Series, 2019, vol. 1391, no. 012079. DOI: 10.1088/1742-6596/1391/1/012079.
Kutateladze S.S. Teploperedacha i gidrodinamicheskoe soprotivlenie: spravochnoe posobie [Heat transfer and hydrodynamic resistance: a reference guide]. Moscow, Energoatomizdat [Energoatomizdat], 1990, 367 p.
Landau L.D., Lifshic E.M. Teoreticheskaya fizika. Tom 6. Gidrodinamika [Theoretical physics. Volume 6. Hydrodynamics]. Moscow, Fizmatlit publ., 1986, 736 p.
Wilcox D.C. Turbulence Modelling for CFD. DCW Industries, 2006, 515 p.
Menter F.R. Zonal two equation k-ω turbulence models for aerodynamic flows. AIAA Paper, 1993, no. 93-2906, 21 p. DOI: 10.2514/6.1993-2906.
Landau L.D., Lifshic E.M. Teoreticheskaya fizika. Gidrodinamika. Tom 5. Сhast' 1 [Theoretical physics. Hydrodynamics. Volume 5. Part 1]. Moscow, Fizmatlit publ., 2001, 694 p.
Kruger T., Kusumaatmaja H., Kuzmin A. et al. The Lattice Boltzmann Method: Principles and Practice. Springer, 2017, 694 p.
Versteeg H.K., Malalasekera W. An introduction to computational fluid dy-namics. The finite volume method. New York, Wiley, 1995, 257 p.
Patankar S.V. Numerical Heat Transfer and Fluid Flow. New York, Hemisphere Publishing Corporation, 1980, 214 p.
Lashkin S.V., Kozelkov A.S., Meleshkina D.P., YAlozo A.V., Tarasova N.V. Modelirovanie techenij vyazkoj neszhimaemoj zhidkosti razdelennym i sovmeshchennym algoritmom tipa SIMPLE [Simulation of flows of a viscous incompressible fluid by a separated and combined algorithm of the SIMPLE type]. Mathematical Models and Computer Simulations, 2016, vol. 28, no. 6, pp. 64-76.
Ferziger J.H. Computational Methods for Fluid Dynamics. Berlin, Springer, 2002,426 p.
Firsov D.M. Metod kontrol'nogo ob"ema na nestrukturirovannoj setke: uchebnoe posobie [Unstructured Grid Control Volume Method: Tutorial]. Tomsk, Izdatel'skij dom TGU [TSU Publishing House], 2007, 72 p.
Huang H. et. al. Multiphase Lattice Boltzmann Methods: Theory and Application.John Willey & Sons, Ltd, 2015, 392 p.
Kupershtokh A.L., Medvedev D.A., Karpov D.I. On equations of state in a lattice Boltzmann method. Computers and Mathematics with Applications, 2009, vol. 58, no. 5, pp. 965-974


Городнов А.О., Лаптев И.В., Сидоренко Н.Ю., Иванов М.Ю., Малахов А.С., Реш Г.Ф. Математическое моделирование процессов ламинарной и турбулентной фильтрации жидкой несжимаемой среды в пористых сетчатых материалах. Математическое моделирование и численные методы, 2023, № 2, с. 67–89.



Download article

Количество скачиваний: 145