533.6.011.55 Numerical simulation high-speed flow around a cylindrical–conical body and a double cone

Kharchenko N. A. (Central Aerohydrodynamic Institute (TsAGI)/MEPhI/Moscow Aviation Institute (National Research University)), Nosenko N. A. (Bauman Moscow State Technical University)

COMPUTATIONAL AEROTHERMODYNAMICS, HIGH-SPEED FLOW, SHOCK WAVES, BOUNDARY LAYER, UNSTRUCTURED GRIDS


doi: 10.18698/2309-3684-2022-3346


The paper presents a classical validation problem of high-speed modeling. This problem is about interaction of a shock wave with a boundary layer in a laminar air flow around a cylindrical–conical body and a double cone. The main computational complexity of this problem is the detailed resolution of the near-wall region in order to further reproduce the experimental distributions of the surface characteristics of pressure and heat flux. Depending on the conditions of the undisturbed flow of the researched flow mode, the problem can have a recirculation zone, which is a vortex flow. This flow has a significant effect on the structure of the near-wall flow.


MacLean M., Holden M.S., Dufrene A. Comparison between CFD and measurements for real-gas effects on laminar shockwave boundary layer interaction. AIAA Aviation, 2014, p. 49.
Holden M.S., MacLean M., Wadhams T.P., Dufrene A. Measurements of real gas effects on regions of laminar shock wave/boundary layer interaction in hypervelocity flows for "blind' code validation studies. 21st AIAA Computational Fluid Dynamics Conference, 2013. DOI: 10.2514/6.2013-2837
Kianvashrad N., Knight D. Simulation of hypersonic shock wave laminar boundary layer interaction on hollow cylinder flare. 54th AIAA Aerospace Sciences Meeting, 2016. DOI: 10.2514/6.2016-0349
Youssefi M.R., Knight D. Assessment of CFD capability for hypersonic shock wave boundary layer interactions, part II. 54th AIAA Aerospace Sciences Meeting, 2016. DOI: 10.2514/6.2016-0350
Kianvashrad N., Knight D. Simulation of hypersonic shock wave laminar boundary layer interaction on hollow cylinder flare, Part II. 47th AIAA Fluid Dynamics Conference, 2017. DOI: 10.2514/6.2017-3975
Dimitrienko Y.I., Koryakov M.N., Yurin Y.V., Zakharov A.A., Sborschikov S.V., Bogdanov I.O. Coupled modeling of high-speed aerothermodynamics and internal heat and mass transfer in composite aerospace structures. Mathematical Modeling and Computational Methods, 2021, no. 3, pp. 42–61.
Kharchenko N.A. Chislennoe modelirovanie aerotermodinamiki vysokoskorostnyh letatel'nyh apparatov [Numerical simulation of aerothermodynamics of high-speed aircraft]. Diss. Cand. Sci. (Phys. — Math.). Moscow, 2021, 112 p.
Bessonov O.A., Kharchenko N.A. Software platform for supercomputer modeling of aerothermodynamics problems. Software Engineering, 2021, vol. 12, no. 6, pp. 302–310.
Kharchenko N.A., Kotov M.A. Aerothermodynamics of the Apollo-4 spacecraft at earth atmosphere conditions with speed more than 10 km/s. Journal of Physics: Conference Series, 2019, vol. 1250, art. no. 012012.
Einfeldt B., Munz C.D., Roe P.L., Sjögreen B. On Godunov-type methods near low densities. Journal of Computational Physics, 1991, vol. 92, iss. 2, pp. 273–295.
Godunov S.K. A Finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics. Sbornik: Mathematics, 1959, vol. 47, no. 8–9, pp. 357–393.
Harten A., Lax P.D., van Leer B. On upstream differencing and Godunov–type schemes for hyperbolic conservation laws. SIAM Review, 1983, vol. 25, no. 1,pp. 35–61.
Toro E.F. Riemann solvers and numerical methods for fluid dynamics. Springer, 2009, 724 p.
Kryukov I.A., Ivanov I.E., Larina E.V. Software package hySol for the numerical simulation of high-speed flows. Physical-Chemical Kinetics in Gas Dynamics, 2021, vol. 22, iss. 1. URL: http://chemphys.edu.ru/issues/2021-22-1/articles/902/
Michalak K., Ollivier-Gooch C. Limiters for unstructured higher-order accurate solutions of the euler equations. 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008, art no. 2008-0776. DOI: 10.2514/6.2008-776
Dimitrienko Y.I., Koryakov M.N., Zakharov A.A. Application of RKDG method for computational solution of three-dimensional gas-dynamic equations with non-structured grids. Mathematical Modeling and Computational Methods, 2015, no. 4, pp. 75–91


Харченко Н.А., Носенко Н.А. Численное моделирование обтекания высокоскоростным потоком цилиндрически–конического тела и двойного конуса. Математическое моделирование и численные методы, 2022, № 3, с. 33–46.



Download article

Количество скачиваний: 273