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В работе представлена классическая валидационная задача высокоскоростного 

моделирования о взаимодействии ударной волны с пограничным слоем при                  

ламинарном обтекании воздушным потоком цилиндрически–конического тела и 

двойного конуса. Основной вычислительной сложностью рассматриваемой задачи 

является подробное разрешение пристеночной области с целью дальнейшего             

воспроизведения экспериментальных распределений поверхностных характери-

стик давления и теплового потока. В зависимости от условий невозмущенного 

потока исследуемого режима обтекания, в задаче имеет место наличие рецирку-

ляционной зоны, представляющей собой вихревое течение, оказывающие                   

существенное влияние на структуру пристеночного потока.  

 

Ключевые слова: вычислительная аэротермодинамика, высокоскоростные                

течения, ударные волны, пограничный слой, неструктурированные сетки 

 

Введение. Целью серии экспериментальных исследований,                 

проводимых в центре исследований аэронавтики CUBRC [1, 2] на 

установке LENS XX, являлось создание валидационного базиса,              

используемого для подтверждения возможностей компьютерных             

кодов вычислительной аэротермодинамики в задачах моделирования 

высокоскоростного обтекания [3–6]. В результате проведённых              

экспериментальных исследований [1, 2] были получены распределе-

ния поверхностных характеристик давления и теплового потока при 

обтекании высокоскоростным потоком цилиндрически–конического 

тела и двойного конуса. 

В данной работе валидационная задача высокоскоростного              

моделирования о взаимодействии ударной волны с пограничным 

слоем при ламинарном обтекании воздушным потоком цилиндриче-

ски–конического тела и двойного конуса численно решалась в трёх-

мерной постановке. Основной целью данного исследования является 

воспроизведение экспериментальных распределений поверхностных 

характеристик давления и теплового потока. 

Математическая постановка задачи. Расчёты обтекания                 

высокоскоростным потоком цилиндрически–конического тела и 

двойного конуса проводились с использованием компьютерного кода 

ГРАТ [7]. Компьютерный код ГРАТ предназначен для суперкомпью-
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терного моделирования аэротермогазодинамики высокоскоростных 

реагирующих течений с сильными ударными волнами [8, 9]. В основе 

разработанного компьютерного кода лежит численное решение 

трёхмерной нестационарной системы уравнений движения вязкого, 

теплопроводного, химически реагирующего газа [7]. Система           

уравнений Навье–Стокса, выражающая законы сохранения массы, 

импульсов и полной энергии, записывается в следующем виде: 
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где    столбец консервативных переменных, F   вектор конвек-

тивного потока, G   вектор вязкого потока. 
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В задачах высокоскоростного  моделирования, не требующих 

учёта физико–химических процессов в газе, решаемая система          

уравнений замыкается термическим и калорическим уравнениями 

состояния совершенного газа: 

  γ 1p e  , ve C T , (2) 

где  2 2 21

2
e E u v w    .   

Для расчёта свойств переноса, коэффициентов вязкости и тепло-

проводности, использовались соотношения: 
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где принимаются постоянными: Pr 0,72 , γ 1,4 , 
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Численный алгоритм решения задачи. Агентный Система 

уравнений газовой динамики численно интегрировалась с использо-

ванием метода HLLE [10]. Используемый для численного интегриро-

вания метод HLLE является приближенным методом решения задачи 

о распаде произвольного разрыва. Такой подход относится к типам 

методов, развивающих идею вычисления потоков через грани          

конечного объема из решения задачи о распаде произвольного          

разрыва, предложенного С.К. Годуновым [11]. Предложенный 

Harten–Lax–van Leer приближенный метод решения задачи о распаде 

произвольного разрыва HLL основан на рассмотрении упрощённой, 

двухволновой конфигурации распространения возмущений, без рас-

смотрения контактного разрыва [12]. Основное отличие метода HLLE 

(Harten–Lax–van Leer–Einfeldt) заключается в осреднении по плотно-

сти скорости звука, предложенном Roe, используемой для нахожде-

ния наибольших и наименьших скоростей распространения волновых 

возмущений [10]. 

Численный поток методом HLLE определяется из соотношения 

[13]: 
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Оценка скорости распространения левой и правой волн SL и SR 

проводится из расчета минимальной и максимальной скорости          

распространения возмущений [13]: 

 V сL L LS   , V сR R RS   , (5) 
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где V   вектор скорости, H    полная энтальпия, с   скорость 

звука осреднённые по методу Роу. 

Для получения более высокого порядка точности численного ре-

шения по пространству задается линейное распределение газодина-

мических параметров внутри ячейки [14]: 
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Линейная реконструкция проводится по неконсервативным           

переменным  , , , , , ,f u v w p e T , а значения газодинамических               

параметров, используемые для вычисления потоков через грани            

конечного объема, определяются на каждой грани из задаваемого 

распределения, что приводит к схеме второго порядка в областях, где 

решение гладкое. Но при этом для сохранения свойства монотонно-

сти численной схемы на газодинамических разрывах необходимо           

использовать ограничитель задаваемого распределения [14]. 

Коэффициент ограничения задаваемого распределения вычисля-

ется из соотношения: 
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где с индексами « l » и « k » значения функций в центрах расчётной и 

соседней ячеек, а с индексом « j » значения функций, вычисленные в 

центре j -ой грани. 

Но отсутствие дифференцируемости записанной функции–

ограничителя приводит к ухудшению монотонности схемы. Обеспе-

чить монотонность численной схемы позволило использование         

дополнительной дифференцируемой функции–ограничителя [15]: 
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В итоге расчётные соотношения для численного интегрирования 

решаемой системы уравнений методом конечного объёма записыва-

ются в следующем виде 

 

 

 

 

1
, ,,

1

, ,,
1

, ,,
1

V

;

t N
nln n

xl l l j l jl j
l j

N
n

yl j l jl j
j

N
n

zl j l jl j
j

F u n S

F v n S

F w n S









 
  




 


 










  





 

 

   

 

 

1 2
, , , ,, ,

1 1

, , , , ,,
1 1

, , ,

1

, , , , ,, 1
1 1

V

1
;

t N N
nnln n n

x xl l l l j l j l j l jl j l j
l j j

N N
nn

xx x yl j l j l j l j l jl j
j j

N
n

yx yl j l j l j

j

N N
n n

z zx zl j l j l j l j l jl j n
j j l

u u F p n S F u n S

n S F uv n S

n S

F uw n S n S



 

 




 

 
    

 

  

 


  



 

 



 

 

 



 


  



Н.А. Харченко, Н.А.Носенко 

38 

 

   

 

 

1
, , , ,, ,

1 1

2
, , , , , , , ,,

1 1 1

, , , , ,, 1
1 1

V

1
;

t N N
n nln n n

y xl l l l j l j l j l jl j l j
l j j

N N N
n

n n
xy x y yy yl j l j l j l j l j l j l j l jl j

j j j

N N
n n

z zy zl j l j l j l j l jl j n
j j l

v v F p n S F uv n S

n S F v n S n S

F vw n S n S



 

  


 

 
   

 

  


  



 

  

 

 

  

 


 (9) 

 

   

 

 

1
, , , ,, ,

1 1

, , , , , , , ,,
1 1 1

2
, , , , , 1,

1 1

V

1
;

t N N
n nln n n

z xl l l l j l j l j l jl j l j
l j j

N N N
nn n

xz x y yz yl j l j l j l j l j l j l j l jl j
j j j

N N
n

n
z zz zl j l j l j l j l j nl j

j j l

w w F p n S F uw n S

n S F vw n S n S

F w n S n S



 

  


 

 
    

 

  


  



 

  

 

 

  

 


  

   

     

     

1
, , , ,, ,

1 1

, , , , , ,, , ,
1 1 1

, , , , , ,, , ,
1

V

t N N
n nln n n

x yl l l l j l j l j l jl j l j
l j j

N N N
n n n

z x yl j l j l j l j l j l jl j l j l j
j j j

N
n n n

z xx x yx yl j l j l j l j l j l jl j l j l j
j j

E E F pu n S F pv n S

F pw n S F uE n S F vE n S

F wE n S u n S u n S



 

  

 

 
    

 

   

  

 

  





 

  

   

   

     

1 1

, , , , , , ,, ,
1 1 1

, , , , , , ,, ,
1 1 1

, , , ,, , ,
1 1

N N

j
N N N

n nn
zx z x x xy xl j l j l j l j l j l j l jl j l j

j j j
N N N

n n n
yy y zy z y yl j l j l j l j l j l j l jl j l j

j j j
N N

n n n
xz x yz y zzl j l j l j l jl j l j l j

j j

u n S q n S v n S

v n S v n S q n S

w n S w n S w



  

  

 



   

   

  

 

  

  

 

 

 

   , ,

1

, , , 1
1

1
,

N

zl j l j

j

N
n

z zl j l j l j n
j l

n S

q n S









 








 

где N   количество граней в конечном объеме, n – номер временно-

го слоя, а l   номер расчётной ячейки. 

Шаг по времени lt  определяется формулой, представленной 

ниже: 

 
 4

V c

l
l

l l
l l

l

h
t CFL

h

 

 
 
  
 

  
 

, (10) 
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где CFL  число Куранта, lc   скорость звука, lh   отношение 

объёма к сумме площадей граней расчётной ячейки. 

Для расчета вязких слагаемых необходимо вычислять производ-

ные скорости и температуры по пространству в центрах граней                 

конечного объема. Вычисление производных основывалось на             

численном интегрирование по конечному объёму, состоящему из 

двух смежных ячеек, относительно центра общей грани и является 

решением системы уравнений: 
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 (11) 

где  X j j lx x  ,  Yj j ly y  ,  Z j j lz z  ,  Fj j lf f  .  

Изложенный численный метод явный и имеет первый порядок 

аппроксимации по времени и второй порядок аппроксимации по   

пространству. Численное интегрирование системы уравнений газо-

вой динамики проводилось до установления стационарного решения. 

Исходные данные для численного моделирования. Для прове-

дения аэротермодинамических расчётов были созданы трёхмерные 

поверхности цилиндрически–конического тела и двойного конуса. 

Геометрические размеры исследуемых объектов показаны на рис. 1.  
 
 

 

    
 

Рис. 1. Геометрические размеры цилинрически–конического 
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Численное моделирование трёхмерного поля течения проводи-
лось с использованием неструктурированных сеток, важным                 
преимуществом которых является автоматизация построения для 
сложных геометрических форм [16]. Сгущение расчётной сетки  
осуществлялось вблизи поверхности исследуемых объектов для            
более детального описания поля течения в пристеночной области. 
Трёхмерная сетка состояла из тетраэдральных и призматических 
элементов, общее количество ячеек которой в расчётной области            
составило 10 888 786 для цилиндрически–конического тела и 32 896 
827 для двойного конуса (рис. 2). 

На поверхности обтекаемого тела задавались граничные условия 
прилипания. Расчёты проводились с постоянной температурой              
поверхности 300 К, вследствие малой продолжительности рабочего 
режима в эксперименте. 

Исходные данные, используемые для численного моделирования 

обтекания высокоскоростным потоком цилиндрически–конического 

тела (режим 1) и двойного конуса (режим 2), приведены в табл. 1             

[1, 2]. 

Таблица 1 

Параметры невозмущенного потока 

Режим М  V , км/с P , Па T , K 

1 11,3 3,11 34,4 189 

2 12,2 3,25 25,1 175 
 

  
Рис. 2. Объемные сетки цилиндрически–конического тела и двойного конуса 

 

Результаты численного моделирования. На рис. 3 и 4                  

представлены распределения числа Маха, продольной компоненты 

скорости, давления и плотности, полученные в результате численно-

го моделирования высокоскоростного  обтекания цилиндрически– 

конического тела.   
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Рис. 3. Распределения числа Маха и продольной компоненты  

скорости (м/с) при высокоскоростном обтекании  

цилиндрически–конического тела 

 

  
Рис. 4. Распределения давления (Па) и плотности (кг/м3) при  

высокоскоростном обтекании цилиндрически–конического тела 

 

 

 
 

 

 
 

 

Рис. 5. Поверхностные распределения давления и теплового потока при                  

высокоскоростном обтекании цилиндрически конического тела,  

точки  эксперимент [1,2] 

  

На распределении плотности показана картина ударно–

волнового взаимодействия при высокоскоростном обтекании двойно-

го конуса (рис. 6). Скачок уплотнения, возникающий вследствие               

отрыва пограничного слоя, взаимодействует с косым скачком             

уплотнения первого конуса, вследствие чего образуется результиру-

ющая ударная волна. Результирующая ударная волна взаимодейству-
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втором конусе прошедшую ударную волну, которая взаимодействует 

со скачком уплотнения, возникающим вследствие присоединения  

потока.  
 

 
 
 

 

Рис. 6. Ударно–волновое взаимодействие при  высокоскоростном обтекании 

двойного конуса. Распределение плотности (кг/м3) 
 

На распределении продольной компоненты скорости (рис. 7) пока-

зана область возвратного течения, возникающая вследствие ударно–

волнового взаимодействия при высокоскоростном обтекании двойного 

конуса.  

Как видно на представленных графиках (рис. 5 и 8), полученные 

в результате численного моделирования распределения  поверхност-

ных характеристик давления и теплового потока хорошо соответ-

ствуют экспериментальным данным [1, 2]. 

 

  
Рис. 7. Распределения продольной компоненты скорости (м/с) при                           

высокоскоростном  обтекании двойного конуса  
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Рис. 8. Поверхностные распределения давления и теплового потока при            

высокоскоростном обтекании двойного конуса, точки  эксперимент [1,2]  

 

Заключение. Результатом проведённых аэротермодинамических 

расчётов ламинарного обтекания высокоскоростным потоком цилин-

дрически–конического тела и двойного конуса компьютерным кодом 

ГРАТ [7] стало получение полей газодинамических функций для 

двух экспериментальных режимов. Основным результатом               

выполненного исследования стало хорошее согласие полученных 

распределений поверхностных характеристик давления и теплового 

потока с экспериментальными данными [1, 2]. 
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The paper presents a classical validation problem of high-speed modeling. This problem 

is about interaction of a shock wave with a boundary layer in a laminar air flow around 

a cylindrical–conical body and a double cone. The main computational complexity of this 

problem is the detailed resolution of the near-wall region in order to further reproduce 

the experimental distributions of the surface characteristics of pressure and heat flux. 

Depending on the conditions of the undisturbed flow of the researched flow mode, the 

problem can have a recirculation zone, which is a vortex flow. This flow has a significant 

effect on the structure of the near-wall flow.   

 

Keywords: computational aerothermodynamics, high-speed flow, shock waves, boundary 

layer, unstructured grids 
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