533.6.011.5 A new dependence for the enthalpy profile in the boundary layer model

Kotenev V. P. (Bauman Moscow State Technical University/JSC MIC NPO Mashinostroyenia), Tonkih E. G. (JSC MIC NPO Mashinostroyenia/МГТУ им.Н.Э.Баумана)

BLUNTED BODY, HEAT FLOW, BOUNDARY LAYER


doi: 10.18698/2309-3684-2022-2-7887


A new dependence for the enthalpy profile in the boundary layer model. A new analytical dependence is proposed for the enthalpy profile in the boundary layer, the use of which makes it possible to quickly and efficiently obtain the distribution of heat flux over the surface of blunted bodies


Abramovich G.N. Prikladnaya gazovaya dinamika. Chast' 1 [Applied gas dynamics. Part 1]. Moscow, Nauka Publ., 1991, 597 p.
Pai Shih-I. Introduction to the theory of compressible flow. D. Van Nostrand, 1959, 385 p.
Orlik E., Fedion I., Davidenko D. Boundary-layer transition on a hypersonic forebody: experiments and calculation. Journal of Spacecraft and Rockets, 2011, vol. 48, no. 4, pp. 545–555.
Kotenev V.P., Bulgakov V.N., Ozhgibisova Y.S. Modification of Pohlhausen method for calculating heat transfer on blunt bodies. Маthematical Modeling and Coтputational Methods, 2016, no. 3, pp. 33–52.
Bulgakov V.N., Kotenev V.P., Ozhgibisova Yu.S. Analytical study of laminar boundary layers near blunted bodies. Mathematical Models and Computer Simulations, 2020, vol. 12, no. 1, pp. 60–69.
Lunev V.V. Techenie real'nyh gazov s bol'shimi skorostyami [Flow of real gases with high velocities]. Moscow, Fizmatlit Publ., 2007, 327 p.
Romanenko P.N. Gidrodinamika i teplomassoobmen v pogranichnom sloe [Hydrodynamics and heat and mass transfer in the boundary layer]. Moscow, Energiya Publ., 1974, 464 p.
Dimitrienko Yu.I., Kotenev V.P., Zakharov A.A. Metod lentochnyh adaptivnyh setok dlya chislennogo modelirovaniya v gazovoj dinamike [The method of ribbon adaptive grids for numerical modeling in gas dynamics]. Moscow, Fizmatlit Publ., 2011, 280 p.
Dimitrienko Yu.I., Zakharov A.A., Koryakov M.N., Syzdykov E.K. Modeling of coupled aerogasdynamics and heat transfer processes on the thermal protection surface of a future hypersonic aircraft. Proceedings of Higher Educational Institutions. Machine Building, 2014, no. 3, pp. 23–34.
Dimitrienko Yu.I., Koryakov M.N., Yurin Yu.V., Zakharov A.A., Sobshchikov S.V., Bogdanov I.O. Coupled modeling of high-speed aerothermodynamics and internal heat and mass transfer in composite aerospace structures. Маthematical Modeling and Coтputational Methods, 2021, no. 3, pp. 42–61.
Tumin A., Wang X., Zhong H. Numerical simulation and theoretical analysis of perturbation in hypersonic boundary layer. AIAA JOURNAL, 2011, vol. 49, no. 3, pp. 463-471.
Kotenev V.P. Exact relation for determining the pressure distribution on a sphere at an arbitrary mach number in a supersonic incoming flow. Mathematical Models and Computer Simulations, 2015, vol. 2, no. 2, pp. 128–133
Kotenev V.P., Sysenko V.A. Analytical formula with improved accuracy for calculating pressure distribution on the surface of convex, blunt rotation bodies of arbitrary shape. Маthematical Modeling and Coтputational Methods, 2014, no. 1, pp. 68–81.
Brykina I.G., Sakharov V.I. Comparison of approximate analytical and numerical solutions for heat fluxes in viscous supersonic flow past a body. Fluid Dynamics, 1996, vol. 31, no. 1, pp. 107–113


Котенев В.П., Тонких Е.Г. Новая зависимость профиля энтальпии в модели пограничного слоя. Математическое моделирование и численные методы, 2022,№ 2, с. 78–87.



Download article

Количество скачиваний: 51