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Предлагается новая аналитическая зависимость для профиля энтальпии в погра-

ничном слое, использование которой позволяет быстро и эффективно получить 

распределение теплового потока по поверхности затупленных тел.  
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Введение. Общее решение уравнений пограничного слоя при 

произвольном распределении давления на исследуемом теле является 

сложной задачей [1-11]. 

Если принять, что число Прандтля равно единице, то, как                    

известно, независимо от распределения давления, существует                   

интеграл, отражающий тот факт, что полная энтальпия в погранич-

ном слое постоянна (интеграл Бернулли) [1]. В этом случае тепловой 

поток на стенке равен нулю (так называемо изолированное тело).             

Если дополнительно принять, что давление не меняется в продоль-

ном направлении (безградиентное течение), то полную энтальпию 

потока можно представить в виде линейной функции от скорости 

(интеграл Крокко) [2]. В этом случае для определения теплового                 

потока к стенке необходимо знать профиль скорости в пограничном 

слое. 

В статье предлагается новая зависимость энтальпии от скорости 

и ее производных, удовлетворяющая условиям на стенке и границе 

пограничного слоя. При этом число Прандтля не обязательно равно 

единице, а давление может быть переменным в продольном                 

направлении. Основанный на этом метод дает хорошую точность в 

определении теплового потока на затупленных телах, о чем                     

свидетельствует сравнение с результатами расчетов в рамках                    

уравнений Навье-Стокса. 

Система уравнений ламинарного пограничного слоя. Для               

последующего определения теплового потока на поверхности                     

затупленных тел введем следующие координаты  ,  : 
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Здесь   — безразмерное приведенное расстояние; 
 

1
1

0

x

dy 

 



 — 

приведенная толщина пограничного слоя;  x  — конечное                   

расстояние от стенки, на котором пограничный слой смыкается с 

внешним течением, 0 1  ,  0 y x  , x  — координата, направ-

ленная вдоль образующей тела, y  — по нормали к ней. 

Согласно [4, 5] система уравнений ламинарного пограничного 

слоя в новых координатах  ,   записывается в следующем виде: 
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Здесь   — плотность; ,u v  — проекции вектора скорости на оси 

x  и y ; r  — цилиндрический радиус образующей тела; P  —                   

давление;   — динамическая вязкость; h  — энтальпия; Pr  — число 

Прандтля. 

На границе пограничного слоя 
1

0
u 
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. Так как первая произ-

водная от скорости по нормальной координате равна нулю, то после 

подстановки в уравнение движения получим 
2

2
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0
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.  

Здесь и далее индексы «0» и «1» соответствуют параметрам                 

потока на стенке и на границе пограничного слоя.   

Примем следующие граничные условия: 

 условие прилипания на стенке: 

 0 0 0 при   0;u v y     

 на границе пограничного слоя для скорости u  и энтальпии h  

зададим значения соответствующих параметров 1u u  и 1h h . 

Динамическую вязкость определим из степенной зависимости: 
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Метод Польгаузена. Согласно методу Польгаузена безразмерная 
скорость в пограничном слое выражается полиномом [4, 5]: 
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Из [4, 5, 7] определим классический полином Польгаузена: 
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Согласно [4, 5] для теплового потока 0Q   для формпараметра 

  справедлива оценка 0 4 . 
Параметры потока на границе пограничного слоя. Распреде-

ление давления получим согласно [12]: 
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, 90   ,   — угол между вектором                 

скорости и осью тела, *  — положение звуковой точки, 0P  —                    

давление торможения.   
Положение звуковой точки определим согласно [6, 13]: 
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Используя формулу (6) можно получить другие параметры по-
граничного слоя: 
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, H  — полная энтальпия. 

Профиль энтальпии в пограничном слое. Зададим профиль h  

следующим полиномом: 
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где   1
ˆ 1H h    ,   — кинетический параметр, принятый 1,2Pr . 

Заданный профиль удовлетворяет граничным условиям на стенке 

и на границе пограничного слоя ( 0h h , 1h h  соответственно).        

Первые производные профиля энтальпии соответствуют                            

выражениям, определенным в [5, 12]: 
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Формпараметр   определим из соотношения, полученного из 

последнего уравнения системы (2) при 0u  , 0v   (рис. 1):  
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 Рис. 1 Пример поведения формпараметра   при 4,11M    

в зависимости от угла   в случае сферы 

 

Расчет тепловых потоков. Согласно [4, 5] для определения теп-

лового потока будем использовать соотношение: 
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Для случая сферы примем   1R  , радиус кривизны эллипсоида  

  
 

 

3
2 2

2 2

1
,

tg
R bn

n tg

 
    





  

где 
b

n
a

 , 1a  . 

Результаты. Получены результаты расчета тепловых потоков 
для сферы и эллипсоида при различных условиях. Сравнение предла-
гаемого подхода с численным решением задачи в рамках уравнений 
Навье-Стокса [14] показывает достаточно высокую точность расчета. 
Результаты тепловых потоков на сфере представлены в зависимости 

от угла  , на эллипсоиде — в зависимости он длины дуги. 
На рис. 2, 3 сплошной линией изображен тепловой поток, рассчи-

танный с помощью заданного профиля энтальпии, крестиками — 
значения при решении задачи в рамках уравнений Навье-Стокса. 
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Рис. 2 Результаты расчета тепловых потоков на сфере: 

а — 04,11; 0,25; Pr 0,7M h    , б — 010, 0,25, Pr 0,7M h    ,  

в — 06; 0,35; Pr 0,7M h    , г — 010; 0,35; Pr 0,7M h     
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а 

 

б 

Рис. 3 Результаты расчета тепловых потоков на эллипсоиде 

а — 010; 0,16; Pr 0,75; / 3 / 2M h b a     , 

б — 010; 0,16; Pr 0,75; / 1/ 2M h b a      

 

Выводы. В работе представлен способ определения тепловых                  

потоков на поверхности затупленных тел, основанный на примене-

нии нового профиля энтальпии. Сравнение полученных результатов с 

решением данной задачи в рамках уравнений Навье-Стокса [14]            

показало приемлемое для оценок тепловых потоков согласование, 

что свидетельствует об их корректности. 
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