and Computational Methods

doi: 10.18698/2309-3684-2014-4-5373

In the article we explored nonlinear hyperbolic delay reaction-diffusion equations with varying transfer coefficients. A number of generalized separable solutions were obtained. Most of the equations considered contain arbitrary functions. Global nonlinear instability conditions of solutions of hyperbolic delay reaction-diffusion systems were determined. The generalized Stokes problem for a linear delay diffusion equation with periodic boundary conditions was solved.

[1] Lykov A.V. Heat Conduction Theory. Moscow, Vysshaya Shkola Publ., 1967, 600 p.

[2] Kutateladze S.S. Fundamentals of Heat Transfer Theory. Moscow, Atomizdat Publ., 1979, 416 p.

[3] Polyanin A.D., Kutepov A.M., Vyazmin A.V., Kazenin D.A. Hydrodynamics, mass and heat transfer in chemical engineering. London, Taylor & Francis, 2002, 387 p.

[4] Cattaneo C. . Comptes Rendus, 1958, vol. 247, pp. 431–433.

[5] Vernotte P. . Comptes Rendus, 1961, vol. 252, pp. 2190–2191.

[6] Polyanin A.D., Vyazmin A.V., Zhurov A.I., Kazenin D.A. Handbook of Exact Solutions to the Equations of Heat and Mass Transfer. Moscow, Faktorial Publ., 1998, 368 p.

[7] Wu J. Theory and applications of partial functional differential equations. New York, Springer, 1996, 119 p.

[8] Wu J., Zou X. J. Dynamics & Dif. Equations, 2001, vol. 13, no. 3, pp. 651–687.

[9] Faria T., Trofimchuk S. J. Dif. Equations, 2006, vol. 228, pp. 357–376.

[10] Smith H.L. An introduction to delay differential equations with applications to the life sciences. New York, Springer, 2010, 182 p.

[11] Polyanin A.D., Zhurov A.I. Communications in Nonlinear Science and Numerical Simulation, 2014, vol. 19, pp. 409–416.

[12] Kyrychko Y.N. Hogan S.J. Journal of Vibration and Control, 2010, vol. 16, no. 7–8, pp. 943–960.

[13] Polyanin A.D., Zhurov A.I. Int. J. Non-Linear Mechanics, 2013, vol. 54, pp. 115–126.

[14] Polyanin A.D., Zhurov A.I. Int. J. Non-Linear Mechanics, 2014, vol. 59, pp. 16–22.

[15] Polyanin A.D., Vyazmin A.V. Theoretical Foundation of Chemical Engineering, 2013, vol. 47, no. 3, pp. 217–224.

[16] Polyanin A.D., Vyazmin A.V. . Chemistry and Chemical Technology Research-Engineering Journal, 2013, vol. 56 (9), pp. 102–108.

[17] Polyanin A.D., Zhurov A.I. . Communications in Nonlinear Science and Numerical Simulation, 2014, vol. 19, no. 8, pp. 2676–2689.

[18] Polyanin A.D., Sorokin V.G. Bulletin of National Research Nuclear University (MIFI), 2014, vol. 3, no. 2, pp. 141–148.

[19] Polyanin A.D., Vyazmin A.V. Theoretical Foundation of Chemical Engineering, 2013, vol. 47, no. 4, pp. 321–329.

[20] Polyanin A.D., Zhurov A.I. J. Math. Anal. Appl., 2015, in print.

[21] Polyanin A.D., Zhurov A.I. Applied Mathematics Letters, 2014, vol. 37, pp. 43–48.

[22] Smith H. L., Zhao X.-Q. SIAM J. Math. Anal., 2000, vol. 31, pp. 514–534.

[23] Mei M., So J., Li M., Shen S. Proc. Roy. Soc. Edinburgh Sect. A, 2004, vol. 134, pp. 579–594.

[24] Polyanin A.D. Inzhenernyi zhurnal: nauka i innovatsii. Engineering Journal: Science and Innovation, 2013, no. 4(16). Available at: http://engjournal.ru/articles/662/662.pdf

[25] Polyanin A.D., Zhurov A.I. Int. J. Non-Linear Mechanics, 2014, vol. 62, pp. 33–40.

[26] Bellman R., Cooke K.L. Differential-Difference Equations. New York, Academic, 1963, 480 p.

[27] Driver R.D. Ordinary and delay differential equations. New York, Springer, 1977, 505 p.

[28] Kuang Y. Delay differential equations with applications in population dynamics. Boston, Academic Press, 1993, 398 p.

[29] Cui B.T., Yu Y.H., Lin S.Z. Acta Math. Appl. Sinica, 1996, vol. 19, pp. 80–88.

[30] Wang J., Meng F., Liu S. J. Comp. & Appl. Math., 2008, vol. 212, no. 2, pp. 397–405.

[31] Cui S., Xu Z. Dif. Equations & Appl., 2009, vol. 1, no. 3, pp. 379–391.

[32] Jackiewicza Z., Zubik-Kowal B. Applied Numerical Mathematics, 2006, vol. 56, no. 3–4, pp. 433–443.

[33] Zhang Q., Zhang C. Applied Mathematics Letters, 2013, vol. 26, no. 2, pp. 306–312.

[34] Polyanin A.D., Zaitsev V.F. Handbook of nonlinear partial differential equations. 2nd edition, Boca Raton, Chapman & Hall / CRC Press, 2012, 1912 p.

[35] Galaktionov V.A. , Svirshchevskii S.R. Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics, Boca Raton, Chapman & Hall/CRC Press, 2007, 498 p.

[36] Pucci E., Saccomandi G. Physica D: Nonlinear Phenomena, 2000, vol. 139, pp. 28–47.

[37] Polyanin A.D., Zhurov A.I. Communications in Nonlinear Science and Numerical Simulation, 2014, vol. 19, no. 3, pp. 417–430.

Polyanin A., Sorokin V., Vyazmin A. Nonlinear delay reaction-diffusion equations of hyperbolic type: Exact solutions and global instability. Маthematical Modeling and Coтputational Methods, 2014, №4 (4), pp. 53-73

Количество скачиваний: 317