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Исследованы нелинейные гиперболические реакционно-диффузионные уравнения с 
переменным коэффициентом переноса при наличии запаздывания. Приведены не-
которые точные решения с обобщенным разделением переменных. Большинство 
рассматриваемых уравнений содержат функциональный произвол. Получены усло-
вия глобальной нелинейной неустойчивости решений широкого класса систем ги-
перболических реакционно-диффузионных уравнений с запаздыванием. Показано, 
что при выполнении условий неустойчивости задачи с начальными данными и не-
которые начально-краевые задачи с запаздыванием являются некорректными по 
Адамару. Решена обобщенная задача Стокса с периодическим граничным услови-
ем, описываемая линейным диффузионным уравнением с запаздыванием. 
 
Ключевые слова: реакционно-диффузионные уравнения, нелинейные дифференци-
альные уравнения с запаздыванием, точные решения, обобщенное разделение пере-
менных, нелинейная неустойчивость, глобальная неустойчивость. 

 
Введение. Для описания нестационарных тепловых и реакционно-

диффузионных процессов обычно используются классические модели 
теплопроводности и диффузии, основанные на законе Био — Фурье — 
Фика, которые приводят к уравнениям теплопроводности и диффузии 
параболического типа (см., например, [1–3]). Такие уравнения обла-
дают физически парадоксальным свойством — бесконечной скоро-
стью распространения теплоты или вещества, что не наблюдается в 
природе. Указанное обстоятельство привело к разработке моделей  
тепло- и массопереноса с конечной скоростью распространения воз-
мущений. Одной из них является модель Каттанео — Вернотте [4, 5], 
приводящая к уравнениям переноса гиперболического типа (см., на-
пример, [6]). 

Важной особенностью многих эволюционных процессов, в том 
числе процессов массо- и теплопереноса, осложненных химическими 
превращениями, является то, что скорость изменения величин в био-
логических, химических, биохимических, физико-химических и дру-
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гих системах зависит не только от их состояния в данный момент 
времени, но и от предыдущей эволюции процесса [7–12]. Такие сис-
темы называют наследственными. В частном случае, когда состояние 
системы определяется не всей ее эволюцией, а только конкретным 
моментом в прошлом, говорят о системе с запаздывающей обратной 
связью. 

Системы с запаздывающей обратной связью часто моделируются 
реакционно-диффузионными уравнениями, в которых кинетическая 
функция F (скорость протекания химических и биохимических реак-
ций) зависит как от искомой функции u = u(x, t), так и от той же функ-
ции с запаздывающим аргументом w = u(x, t−τ). В некоторых случаях 
запаздывание может быть заданной функцией времени τ = τ(t). Такие 
уравнения называют функционально-дифференциальными. 

Рассмотрим некоторые типы уравнений массо- и теплопереноса с 
запаздыванием. Наиболее простым является обобщение параболиче-
ского уравнения диффузии, включающее реакционный член с запаз-
дыванием (параболическое реакционно-диффузионное уравнение с 
запаздыванием). В одномерном случае оно записывается в виде 

2

2
( , ), ( , ),

u u
a F u w w u x t

t x

 
    

 
 

где u = u(x, t) — искомая функция; F(u, w) — кинетическая функция;  
τ — время запаздывания. Некоторые точные решения этого уравне-
ния получены в [11, 13, 14]. 

Другим уравнением с запаздыванием является дифференциально-
разностное реакционно-диффузионное уравнение [13] 

( ) ( , ), ( , ).
v u

G u F u v v u x t
t x x

           
 

Такие уравнения следуют из дифференциально-разностной моде-
ли для потока [15, 16]. Физический смысл модели заключается в том, 
что процесс переноса в локально-неравновесных средах обладает 
инерционными свойствами: система реагирует на воздействие не  
в тот же момент времени t, как в классическом локально-равновесном 
случае, а позже на время релаксации τ. 

Еще одним типом уравнений являются гиперболические уравне-
ния типа Клейна − Гордона с запаздыванием: 

2 2

2 2
( , ), ( , ).

u u
a F u w w u x t

t x

 
    

 
 

Некоторые точные решения этого уравнения приведены в [17, 18]. 
При решении нестационарных проблем массопереноса часто воз-

никает необходимость учета релаксационных явлений, связанных как 
с конечностью скорости переноса теплоты и массы, так и с конечно-
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стью времени химических превращений или взаимодействия между 
различными фазами, составляющими единую макросреду переноса. 
В данной работе будут получены некоторые точные решения нели-
нейных гиперболических реакционно-диффузионных уравнений вида 

2 2

2 2
( , ), ( , ).

u u u
a F u w w u x t

tt x

  
       

 
               (1) 

Далее считается, что a > 0, ε ≥ 0, σ ≥ 0 (ε + σ ≠ 0). Для линейного 
уравнения с запаздыванием при F(u, w) = – kw будет решена обоб-
щенная задача Стокса с периодическим граничным условием. Заме-
тим, что решение задачи Стокса с таким граничным условием для 
одномерного дифференциально-разностного уравнения рассмотрено 
в [13, 15, 19]. 

В данной статье также представлены точные решения более слож-
ных нелинейных реакционно-диффузионных уравнений с переменным 
коэффициентом переноса G(u): 

2

2
( ) ( , ), ( , ).

u u u
G u F u w w u x t

t x xt

               
        (2) 

Более простые уравнения этого вида при ε = 0 рассмотрены в [20, 21]. 
В данной работе получены условия неустойчивости решений ши-

рокого класса нелинейных систем реакционно-диффузионных урав-
нений с запаздыванием и показано, что при выполнении условий  
неустойчивости задачи с начальными данными и некоторые началь-
но-краевые задачи являются некорректными по Адамару. Следует 
заметить, что вопросам устойчивости решений различных реакцион-
но-диффузионных уравнений с запаздыванием и систем таких урав-
нений посвящены работы [22–25]. 

Точные решения, методы и подходы. Термин «точные решения 
нелинейных дифференциально-разностных уравнений в частных произ-
водных» (в том числе и уравнений в частных производных с запаздыва-
нием) применяют в случаях, когда результат может быть выражен: 

через элементарные функции или представлен в замкнутой форме 
(через неопределенные или определенные интегралы); 

через решения обыкновенных дифференциальных или обыкно-
венных дифференциально-разностных уравнений (их систем); 

через решения линейных уравнений в частных производных. 
Допустимы также комбинации приведенных решений.  
Методы решения и приложения линейных и нелинейных обык-

новенных дифференциально-разностных уравнений описаны, напри-
мер, в [10, 26–28]. Осцилляционные свойства некоторых нелинейных 
гиперболических уравнений с запаздыванием изучены, например  
в [29–31]. Проблемы численного решения различных нелинейных 
систем с запаздыванием описаны в [32, 33]. 
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Одним из наиболее эффективных методов исследования реакци-
онно-диффузионных уравнений является метод обобщенного разде-
ления переменных, когда точные решения уравнений находят в виде 

1

( ) ( ).
N

n n
n

u x t


                                        (3) 

Функции φn(x) и ψn(t) определяют после подстановки (3) в исход-
ное уравнение. Чаще всего в сумме (3) используют функции 

 ( ) 0, 1, 2 ;k
n x x k       ( ) exp ;n nx x    

 ( ) cos ;n nx x       ( ) sin ,n nx x    

где параметры λn и βn определяют из (3) и исходных уравнений. 
Функции ψn(t) часто имеют аналогичный вид. Нелинейные диффе-
ренциальные уравнения в частных производных без запаздывания, 
допускающие решения вида (3) и модификации метода поиска таких 
решений, рассмотрены в [34, 35]. 

Существуют также более сложные решения с функциональным 
разделением переменных вида 

1

( ); ( ) ( ).
N

n n
n

u U z z x t


                                (4) 

В частности, при U(z) = z решение (4) совпадает с решением (3). 
Решения вида (4) для нелинейных уравнений в частных производных 
без запаздывания рассмотрены, например, в [34–36]. 

Для нелинейных уравнений в частных производных с запаздыва-
нием, содержащих произвольные функции, прямое применение ме-
тода обобщенного разделения переменных не всегда эффективно. 
Для их решения предложен метод функциональных связей [20, 37]. 
Рассмотрим нелинейные реакционно-диффузионные гиперболиче-
ские уравнения с запаздыванием и кинетической функцией, завися-
щей от одного сложного аргумента: 

2 2

2 2
( ), ( , ), ( , ),

u u u
a F z z z u w w u x t

tt x

  
      

 
        (5) 

где z = z(u, w) — также искомая функция. Точные решения ищем в 
виде (3) с простейшими мультипликативным и аддитивным разделе-
нием переменных. 

Для определения вида аргумента z = z(u, w) произвольной функ-
ции F(z) используем метод функциональных связей, который основан 
на поиске точных решений, удовлетворяющих одной из связей [37]: 

     , ; , ;z u w p x w u x t                          (6) 
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     , ; , .z u w q t w u x t                                 (7) 

Эти связи не что иное, как разностные уравнения относительно t 
со свободным параметром x. Частное решение уравнения (6) или (7)  
с учетом (3) определяет допустимый вид точного решения, которое 
находят подстановкой (3) в рассматриваемое уравнение с запаздыва-
нием (5). Попутно определяют  также вид функции F(z). 

С помощью метода функциональных связей построим точные 
решения гиперболического реакционно-диффузионного уравнения 

2 2

2 2
( ), ( , ),

u u u
a bu F u w w u x t

tt x

  
        

 
         (8) 

которое является частным случаем уравнения  (5) при z = u − w. 
Функциональная связь второго рода (7) имеет вид 

   ; , .u w q t w u x t                                (9) 

Разностному уравнению (9) можно удовлетворить, если положить 

    ,u x t                                        (10) 

что дает      q t t t     . Подставляя (10) в (8) и разделяя пере-

менные, получаем уравнения для φ(x) и ψ(t): 

( ) ( ) ;

( ) ( ) ( ) ( ( ) ( )) ,

a x b x C

t t b t F t t C

   
          

 

где C — постоянная. Штрихи обозначают производные. 
Функциональная связь первого рода (6) имеет вид 

   ; , .u w p x w u x t                                (11) 

Разностному уравнению (11) можно удовлетворить, взяв, напри-
мер, решение с обобщенным разделением переменных вида 

    ,u t x x                                        (12) 

которое дает    .p x x   Подставляем (12) в (8) и получаем урав-

нения для φ(x) и ψ(x): 

( ) ( ) 0;

( ) ( ) ( ( )) ( ) 0.

a x b x

a x b x F x x

   
      

 

Точные решения линейного реакционно-диффузионного урав-
нения с запаздыванием. Рассмотрим теперь линейное реакционно-
диффузионное уравнение гиперболического типа с запаздыванием 

2 2

2 2
, ( , ).

u u u
a kw w u x t

tt x

  
       

 
                  (13) 
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Ниже приведены некоторые точные решения этого уравнения. 
1. Решение с разделяющимися переменными: 

     cos sin ,u A x B x f t       

где A, B — произвольные постоянные, а функция f(t) описывается 
обыкновенным дифференциальным уравнением с запаздыванием 

       2 0.f t f t a f t kf t                            (14) 

Уравнение (14) допускает экспоненциальные и тригонометрические 
частные решения. Методы его решения изложены, например в [26]. 

Другие решения с разделяющимися переменными имеют вид 

     exp exp ,u A x B x f t       

где функция f(t) описывается уравнением с запаздыванием (14), в ко-
тором μ2 надо заменить на −μ2. 

2. Уравнение (13) допускает решения с обобщенным разделением 
переменных полиномиального вида по t: 

0

( , ) ( ),
n

m
m

m

u x t t x


                                  (15) 

где функции ψm(x) описываются системой линейных обыкновенных 
дифференциальных уравнений. Полагая n = 2 в (15), имеем решение 

       2
2 1 0, ,u x t t x t x x      

где функции ψm(x) описываются уравнениями 

 

   

2 2

1 1 2

2
0 0 2 1

0,

2 ,

2 ,

a k

a k k

a k k k

   

      

           

 

которые легко интегрируются. 
3. Уравнение (13) допускает решения с обобщенным разделением 

переменных полиномиального вида по x: 

0

( , ) ( ),
n

m
m

m

u x t x t


   

где функции φm(t) описываются системой линейных обыкновенных 
дифференциальных уравнений с запаздыванием 

     
     

          
1 1 1

2

0;

0;

1 2 , 0, 1, ..., 2,

n n n

n n n

m m m m

t t k t

t t k t

t t k t a m m t m n

  



        

        

             

 

которая может быть последовательно решена. 
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4. Имеются также решения уравнения (13) вида 

         , cos sin .u x t x t x t      

Обобщенная задача Стокса с периодическим граничным ус-
ловием. Рассмотрим задачу Стокса для линейного уравнения (13) без 
начальных условий и c периодическими граничными условиями спе-
циального вида: 

 cos при 0;

0 при .

u A t x

u x

    

 
                             (16) 

Решение задачи (13), (16) имеет вид 

 cos ,xu Ae t x                                 (17) 

где постоянные λ и β определяют из системы алгебраических уравнений: 

 2 2 2

sin 2 ;

cos .

k a

k a

   

     
                          (18) 

Для удобства введем обозначения: 

   2sin / ; cos /C k a D k a                  (19) 

и запишем решение системы (18): 
1 2 1 22 2 1 2 2 2 1 2( ) ( )

; .
2 2

C D D С D D      
      

   
       (20) 

Особенность рассматриваемой 
задачи состоит в том, что декремент 
затухания λ зависит от частоты ω и 
при определенных наборах значе-
ний параметров ε, σ, a, k, τ обраща-
ется в нуль на частотах ωλ (рис. 1), 
которые можно найти из первого 
соотношения (19). Обращение λ в 
нуль приводит к тому, что решение 
(17) перестает затухать и удовле-
творять граничному условию (16) 
при x → ∞. Функция λ(ω) является 
непрерывной, поэтому на частотах, 
близких к ωλ, будут наблюдаться похожие явления, например очень 
медленное затухание, хотя решение все еще будет удовлетворять 
граничному условию на бесконечности. 

Декремент затухания λ обращается в нуль при C = 0, т. е. при ωλ, 
удовлетворяющих уравнению sink     , которое можно пред-

ставить в виде 

 

Рис. 1. Зависимость декремента за-
тухания λ от частоты ω в диапазоне  
0 < ω < 106   при  ε = 1;  σ = 1;  a = 1; 

k = 109; τ = 10−5 
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sin ; ; / .k                                   (21) 

Уравнение (21) можно решить чис-
ленно для каждого набора параметров 
k, τ, σ. На рис. 2 показана зависимость 
значения первого корня Ωλ1 уравне-
ния (21) от ξ. 

Совместный качественный анализ 
графиков функций, стоящих в левой и 
правой частях уравнения (21), а также 
рис. 2 дают следующие результаты: 

1) уравнение (21) имеет положи-
тельные решения Ωλ только при ξ > 1; 

2) количество решений Ωλ возрастает с увеличением значения ξ; 
3) все положительные решения Ωλ удовлетворяют неравенству  

Ωλ ≤ ξ и лежат в интервалах  2 2 1 , 0,1, ..., 2j j j N          ,  

N — количество решений (здесь A    обозначает наибольшее целое 

число, меньшее или равное A). Первый интервал содержит одно ре-
шение, последний — одно или два в зависимости от значения ξ, ос-
тальные интервалы содержат по два решения. 

При 0   получаем задачу для линейного реакционно-диффузион-
ного уравнения гиперболического типа без запаздывания. Ее решение 
имеет вид 

 0
0cos ,xu Ae t x                                 (22) 

аналогичный решению (17) задачи с запаздыванием. Значения декре-
мента затухания λ0 и коэффициента сдвига β0 определяют по формулам: 

1 2 1 22 2 1 2 2 2 1 2
0 0 0 0 0 0

0 0
( ) ( )

; ,
2 2

C D D С D D      
      

      
     (23) 

где использованы обозначения 

 2
0 0/ ; / .C a D k a                            (24) 

Анализ формул (23), (24) показывает, что не существует ненуле-
вых частот ωλ, на которых λ0(ωλ) = 0, а значит, решение (22) всегда 
удовлетворяет граничным условиям (16). Функция λ0(ω) не убывает 
при σ2 > 4εk, не возрастает при σ2 < 4εk и постоянна (не зависит от ω) 
при σ2 = 4εk. Зависимость β0(ω) строго возрастает при любых наборах 
значений параметров ε, σ, a, k. 

Уравнения с переменным коэффициентом переноса. Рассмот-
рим нелинейное реакционно-диффузионное уравнение гиперболиче-
ского типа с запаздыванием и переменным коэффициентом переноса 

  

Рис. 2. Зависимость значений пер-
вого корня Ωλ1 уравнения (21) от ξ 
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2

2
( ) ( , ), ( , ).

u u u
G u F u w w u x t

t x xt

               
        (25) 

Уравнение (25) допускает очевидные решения типа бегущей волны 

  , ,u U z z kx t    

где k, λ — произвольные постоянные, а функция U(z) удовлетворяет 
обыкновенному дифференциальному уравнению с запаздыванием 

             2 2 , , .U z U z k G U z U z F U z U z


             
 

Уравнение 1. Рассмотрим уравнение (25) вида 
2

1
2

( ), ( , ),n nu u u
a u bu uF w u w u x t

t x xt
                

     (26) 

где F — произвольная функция. 
 Уравнение (26) при b(n + 1) > 0 имеет решение с разделяющи-

мися переменными 

         1/ 1
1 2cos sin , 1 / ,

n
u C x C x t b n a


           

где C1, C2 — произвольные постоянные, а функция ψ(t) описывается 
обыкновенным дифференциальным уравнением с запаздыванием 

          / .t t t F t t                            (27) 

Уравнение (27) имеет частное решение   tt Ae  , где A — про-

извольная постоянная, а β определяется из алгебраического (транс-
цендентного) уравнения 

 2 0.F e    

 Уравнение (26) при b(n + 1) < 0 допускает решение вида 

         1/ 1
1 2exp exp , 1 / ,

n
u C x C x t b n a


            

где C1, C2 — произвольные постоянные, а функция ψ(t) описывается 
обыкновенным дифференциальным уравнением с запаздыванием (27). 

 Уравнение (26) при n = −1 допускает решение 

2
1 2exp ( ),

2

b
u C x C x t

a
     
 
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где C1, C2 — произвольные постоянные, а функция ψ(t) описывается 
обыкновенным дифференциальным уравнением с запаздыванием (27). 

Уравнение 2. Уравнение (25) вида 

2

2
( )nu u u

a u uF w u
t x xt

            
 

допускает решение с разделяющимися переменными u = φ(х)ψ(t), где 
функции φ(x), ψ(t) удовлетворяют обыкновенному дифференциаль-
ному уравнению и обыкновенному дифференциальному уравнению с 
запаздыванием 

  ;n
x x

'
a b                                         (28) 

            1 / ,nt t b t t F t t                    (29) 

b — произвольная постоянная. 
При b = 0 уравнение (29) переходит в (27), а (28) имеет решение 

1 ( 1)
1 2

1 2

( ) при 1,
( )

exp( ) при 1;

nC x C n
x

C C x n

     
 

 

где C1, C2 — произвольные постоянные. 
При n ≠ −2, n ≠ 0 уравнение (28) имеет частное решение вида 

12
2( ) , .

2 ( 2)

n

n bn
x Ax A

a n

 
     

 

Уравнение 3. Уравнение (25) вида 
2

1
2

( ) ( ),n nu u u
a u uF w u u H w u

t x xt
             

 

где F(z), H(z) — произвольные функции, допускает решение 

  ,tu e x   

где λ является решением алгебраического (трансцендентного) уравнения 

 2 ,F e    

а функция φ(x) описывается обыкновенным дифференциальным 
уравнением 

   1 0.n n
x x

'
a H e      
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При n ≠ −1 замена θ = φn+1 приводит к линейному обыкновенному 
дифференциальному уравнению второго порядка с постоянными ко-
эффициентами. При n = −1 применяем замену θ = ln φ. 

Уравнение 4. Уравнение 

2 1 1 ( ),n n k k k ku u
a u cu u F u w

t x x
            

 

соответствующее вырожденному случаю уравнения (25) при ε = 0  
(σ = 1, k ≠ 0), допускает решения с обобщенным разделением пере-
менных 

2
1[ ( )] , ,

( 1 )
k ck

u x t
a n k


     

 
 

где функция ψ(t) описывается обыкновенным дифференциальным 
уравнением с запаздыванием 

      .t kF t t       

Уравнение 5. Уравнение (25) вида 
2

1 1 2 1 1 1
2

( ) ( )n n n n n nu u u
a u F u w u H u w

t x xt
                    

 

при ε ≠ 0, σ = 0, n ≠ −1 допускает решение с обобщенным разделени-
ем переменных 

   
1/( 1)2

1 2
1

, ,
2

n n
u At Bx C x C B F A

a

 
        

где C1, C2 — произвольные постоянные; константа A определяется из 
алгебраического (трансцендентного) уравнения 

   22 1 0.nA n H A      

Уравнение 6. Рассмотрим уравнение (25) вида 
2

2
( ).u uu u u

a e be F u w
t x xt

               
            (30) 

 При b = 0 уравнение (30) допускает решение в виде суммы 
функций разных аргументов 

2
1 2 3

1
ln( ) ( ),u C x C x C t   


 

где C1, C2, C3 — произвольные постоянные, а функция ψ(t) описывает-
ся обыкновенным дифференциальным уравнением с запаздыванием 
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( )12
( ) ( ) ( ( ) ( )).taC
t t e F t t         


 

 При bβ > 0 уравнение (30) допускает решение в виде суммы 
функций разных аргументов 

1 2 3
1

ln[ cos( ) sin( )] ( ), ,u C C x C x t b a        


 

где ψ(t) описывается обыкновенным дифференциальным уравнением 
с запаздыванием 

( )
1( ) ( ) ( ( ) ( )).tt t bC e F t t                     (31) 

 При bβ < 0 уравнение (30) также допускает решение в виде 
суммы функций разных аргументов 

1 2 3
1

ln[ exp( ) exp( )] ( ), ,u C C x C x t b a         


 

где функция ψ(t) описывается уравнением с запаздыванием (31). 
Уравнение 7. Уравнение (25) вида 

2
2

2
( ) ( )u u w u u wu u u

a e F e e e H e e
t x xt

                     
 

при ε ≠ 0, σ = 0 допускает решение с обобщенным разделением пере-
менных 

2
1 2

1
ln( ), ( ),

2
u At Bx C x C B F A

a


      


 

где C1, C2 — произвольные постоянные; константа A определяется из 
алгебраического (трансцендентного) уравнения 

 2 0.A H A     

Уравнение 8. Уравнение (25) вида 
2

2
2 3

( ) 1
( ) ( ( ) ( )),

( )( ( ))

u u u g u
a g u b A A F g u g w

t x x g ut g u

                        
 

где g(z), f(z) — произвольные функции, штрих обозначает производ-
ную по соответствующему аргументу, допускает решение с функ-
циональным разделением переменных в неявном виде 

2
1 2( ) ,

2

b
g u At x C x C

a
     

где C1, C2 — произвольные постоянные; константа A определяется из 
алгебраического (трансцендентного) уравнения   1F A  . 
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Нелинейная неустойчивость решений систем реакционно-
диффузионных уравнений с запаздыванием. Пусть  0 0 , tu u x  — 

вектор-функция, является некоторым решением нелинейной системы 
параболических уравнений в частных производных с запаздыванием. 
Пусть удалось найти другое решение этой системы в виде суммы 

   0 , , , ,t t  u u x v x  

где v(x, t, δ) — достаточно гладкая функция, ограниченная при ко-
нечных t и зависящая от параметра δ, который не входит в систему 
уравнений. 

Решение  0 0 , tu u x  является неустойчивым, если функция v 
удовлетворяет условиям: 

 
 

, , 0 при 0 , 0,

, , при  , 0 любое.

t t τ

t t

    

     

v x

v x
               (32) 

Из условия (32) следует, что при 0 ≤ t ≤ τ в силу непрерывности v 
по δ для любого достаточно малого Δ можно выбрать такое значение δ, 
при котором выполняется неравенство |u − u0| ≤ Δ, а при t → ∞ вели-
чина |u − u0| становится неограниченной. 

Для гиперболической системы уравнений в частных производных 
с запаздыванием к условиям (32) надо добавить условие для произ-

водных по времени: 
( , , )

0
t

t

 



v x

 при δ → 0 (для 0 ≤ t ≤ τ ). 

Глобальные условия неустойчивости реакционно-диффузион-
ных систем с запаздыванием. Проанализируем неустойчивость сис-
темы реакционно-диффузионных уравнений гиперболического типа с 
запаздыванием 

2 2
1 1 1

1 1 1 1 1 1 2 22 2

2 2
2 2 2

2 2 2 1 1 2 22 2

( , , );

( , , ), 0,

u u u
a bu F u kw u w

tt x

u u u
a G u kw u w k

tt x

  
     

 
  

     
 

      (33) 

где u1;2 = u1;2(x, t); w1;2 = u1;2(x, t − τ); a1;2 > 0; ε1;2 ≥ 0; σ1;2 ≥ 0  
(ε1;2 + σ1;2 ≠ 0); F, G — произвольные функции трех аргументов; τ — 
время запаздывания. 

В общем случае система (33) (при τ ≠ 0) допускает простейшие 
решения: стационарное, однородное (не зависящее от x) и типа бегу-
щей волны u1 = u1(z), u2 = u2(z), где z = αx + βt. Устойчивость этих и 
некоторых других решений различных реакционно-диффузионных 
уравнений с запаздыванием и систем таких уравнений рассмотрена, 
например в [22–25]. 
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Лемма. Пусть 

   10 10 20 20, , ,u u x t u u x t                            (34) 

есть некоторое решение системы (33). Тогда эта система имеет также 
решение 

     1 10 2 20
1

, , ; , ; ln , 0,ctu u x t e V x t u u x t c k k    


    (35) 

где V = V(x, t) — любое τ-периодическое решение линейного уравнения 
2 2

2
1 1 1 1 1 12 2

( 2 ) ( ) ,

( , ) ( , ).

V V V
c a b c c V

tt x
V x t V x t

  
         

 
  

      (36) 

Воспользуемся леммой для получения условий неустойчивости 
нелинейной реакционно-диффузионной системы (33). Для этого возь-
мем стационарное пространственно-периодическое решение уравне-
ния (36): 

  2 2
1 1 1 1 1sin ; ( / ; 0,V x b c c a b c c                (37) 

где δ, μ — произвольные постоянные. 
Анализ (35) и (37) показывает, что для системы (33) условие (32) 

будет выполняться при 

 22
1 11; 0; ln ln 0,k b k k                      (38) 

тогда любое ее решение u10(x, t), u20(x, t) будет неустойчивым. 
Условия (38) можно представить в более наглядном виде: 

 2
0 0 1 1 1

ln
1; 0; ; 4 .

2

k
k b b

b
                  (39) 

Соотношения (39) следуют из неравенства (38) для τ, причем ветвь 

 2
0 0 1 1 1

ln
; 4

2

k
b

b
            

не рассматривается, так как противоречит условию τ > 0.  
Физический смысл условий (39) состоит в том, что в области па-

раметров k > 1, b > 0 неустойчивость возникает за счет запаздывания, 
которое должно быть достаточно большим: τ ≥ τ0. 

Поскольку вид кинетических функций F и G не влияет на усло-
вия неустойчивости (39) реакционно-диффузионной системы (33), 
назовем их глобальными условиями неустойчивости. Речь идет о не-
линейной неустойчивости, все результаты являются точными (а не 
линеаризованными, как в теории линейной устойчивости, поскольку 
не использованы никакие допущения, разложения и аппроксимации, 
характерные для нелинейных теорий). 
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Неустойчивость решений задач с начальными данными. 
Пусть (34) — решение задачи типа Коши с начальными условиями 
общего вида 

     
 

1 11 2 21 1 12

2 22

, , , , , ,

, при 0

t

t

u u x t u u x t u u x t

u u x t t

   

    
                (40) 

для системы уравнений с запаздыванием (33) на всей области изме-
нения пространственной переменной −∞ < x < ∞. Здесь и далее ∂t 
обозначает частную производную по t. 

Из леммы следует, что при k > 0 система (33) имеет решение, ко-
торое определяется формулами (35) и (37). Обозначив это решение 

1 2,u u  , получим 

 1 10 2 20sin ; ,ctu u e x u u                          (41) 

где δ, μ — произвольные постоянные; 
1

lnc k


, а коэффициент γ оп-

ределен в (37). Сравнивая решения (34) и (41), их производные по t 
при 0 ≤ t ≤ τ, имеем 

1 10 1 10 2 20 2 20; ; 0; 0.c c
t t t tu u e u u ce u u u u                   (42) 

При фиксированных τ и k (при k > 1, что соответствует c > 0) раз-
ности между решениями (34) и (41) и их производными по t можно 
сделать сколь угодно малыми за счет выбора δ, т. е. начальные данные 
для этих решений будут мало различаться при 0 ≤ t ≤ τ. С другой сто-

роны, при выполнении условий (39) и 
1

2
x

     
 имеем 

1 10 при ,cu u e t      

т. е. при выполнении глобальных условий неустойчивости первона-
чально близкие решения двух задач типа Коши будут неограниченно 
расходиться с течением времени. 

Указанная неустойчивость решений системы уравнений с запазды-
ванием (33) относительно начальных данных делает задачу Коши для 
нее некорректно поставленной по Адамару (в случае выполнения (39)). 
Отметим, что неустойчивость носит общий характер и не зависит от ви-
да функций F и G. 

Неустойчивость решений некоторых начально-краевых за-
дач. Покажем, что при выполнении условий (39) может иметь место 
глобальная неустойчивость решений некоторых начально-краевых 
задач с граничными условиями первого, второго рода в ограниченной 
области 0 ≤ x ≤ h. 

Пусть (34) — решение начально-краевой задачи для системы 
уравнений с запаздыванием (33) с начальными условиями (40) и об-
щими граничными условиями первого рода: 
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               1 1 2 2 1 1 2 20, ; 0, ; , ; , ,u t t u t t u h t t u h t t          (43) 

где / ,h     а коэффициент γ определен в (37). 
Формула (41) при μ = 0 дает решение системы (33), которое точно 

удовлетворяет граничным условиям (43). Это решение за счет выбора δ 
можно сделать сколь угодно близким к решению (34) в области на-
чальных данных 0 ≤ t ≤ τ. Однако при выполнении глобальных усло-
вий неустойчивости (39) первоначально близкие решения (34) и (41) 
рассматриваемых начально-краевых задач будут экспоненциально 
расходиться при t → ∞ в середине / 2x h  рассматриваемой области. 
Такая неустойчивость решений системы (33) относительно началь-
ных данных делает начально-краевую задачу для нее некорректно 
поставленной по Адамару (в случае выполнения условий (39)). 

В случае краевых условий второго рода, когда на границах облас-
ти задаются производные по координате x, решение (34) следует 
сравнивать с решением, полученным с помощью леммы и форму- 
лы (37) при / 2.    

Выводы. Получены новые точные решения нелинейных реакци-
онно-диффузионных уравнений с постоянным запаздыванием, кото-
рые содержат одну или две произвольные функции одного аргумента. 
Найдены решения с обобщенным и функциональным разделением 
переменных, в том числе периодические решения по пространствен-
ной переменной. 

Получены условия глобальной нелинейной неустойчивости реше-
ний некоторых систем реакционно-диффузионных уравнений с запаз-
дыванием. Показано, что при выполнении условий неустойчивости 
соответствующие задачи с начальными данными и начально-краевые 
задачи являются некорректными по Адамару. 

Описаны некоторые точные решения линейного реакционно-диф-
фузионного уравнения с постоянным запаздыванием. Решена обобщен-
ная задача Стокса с периодическим граничным условием, проведен ка-
чественный анализ решения. 
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In the article we explored nonlinear hyperbolic delay reaction-diffusion equations with 
varying transfer coefficients. A number of generalized separable solutions were obtained. 
Most of the equations considered contain arbitrary functions. Global nonlinear instabil-
ity conditions of solutions of hyperbolic delay reaction-diffusion systems were deter-
mined. The generalized Stokes problem for a linear delay diffusion equation with period-
ic boundary conditions was solved. 
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