531.6.011.32:532.582.4 Method for organizing an iterative process in modeling subsonic separated flow around elongated bodies using an equivalent surface and cubic splines

Timofeev V. N. (Bauman Moscow State Technical University)

MATHEMATICAL MODELING, SUBSONIC SEPARATION FLOW, THE CONCEPT OF VISCO–INVISCID INTERACTION, THE EQUIVALENT OF THE SURFACE, SMOOTHING CUBIC SPLINE


doi: 10.18698/2309-3684-2021-4-80102


In the aspect of improving the methodology of mathematical modeling of subsonic detachable flow around elongated bodies with partial implementation of the concept of viscosity-inviolable interaction, the issues of organizing the iterative process of constructing the surface of an equivalent body are considered. A flow diagram with a semi-infinite equivalent surface was used. Numerical modeling was carried out according to the algorithms of the technique using the method of discrete vortices. For greater versatility, when constructing a calculated grid on the surface of an equivalent body, approximation with smoothing cubic splines was used. Data on the influence of the shape of the tail section of the equivalent surface on the distribution of speed and pressure during axisymmetric flow around bodies with a bottom section are presented.


Fletcher K. Vychislitelnye metody v dinamike zhidkostej. T. 2. Metody rascheta razlichnyh techenij [Computational methods in fluid dynamics. Vol. 2. Methods for calculating different flows]. Moscow, Mir Publ., 1991, 552 p.
Patankar S.V. Chislennye metody resheniya zadach teploobmena i dinamiki. [Numerical methods for solving problems of heat transfer and dynamics]. Moscow, Energoatomizdat Publ., 1984, 152 p.
Gogish L.V., Stepanov G.Yu. Otryvnye i kavitatsionnye techeniya. Osnovnye svoiystva i raschet modeli [Detached and cavitational flows. Basic properties and model calculation]. Moscow, Nauka Publ., 1990, 384 p.
Belotserkovskiy S.M., Nisht M.I., Kotovskiy V.N., Fedorov R.M. Trekhmernoe otryvnoe obtekanie tel proizvolnoy formy [Three-dimensional detached flow of the bodies of arbitrary form]. Moscow, TsAGI (Central Aerohydrodynamic Institute) Publ., 2000, 265 p.
Saffman P.G. Vortex Dynamics. Cambridge, Cambridge University Press, 1992, 311 p.
Lewis R.I. Vortex element methods for fluid dynamic analysis of engineering systems. Cambridge, Cambridge University Press, 2005, 592 p.
Andronov P.R., Guvernyuk S.V., Dynnikova G.Ya. Vikhrevye metody rascheta nestatsionarnykh gidrodinamicheskikh nagruzok [Vortex methods of calculation of nonstationary hydrodynamic loads]. Moscow, Institute of Mechanics Lomonosov MSU Publ., 2006, 184 p.
Golovkin M.A., Golovkin V.A., Kalyavkin V.M. Voprosy vihrevoj gidromehaniki [Questions of vortex hydromechanics]. Moscow, Fizmatlit Publ., 2009, 264 p.
Dergachev S.A., Scheglov G.A. Vortex element method simulation of flow around bodies using closed vortex loops. Civil Aviation High Technologies, 2016, no. 223, pp. 19–27.
Kocur O.S., Shcheglov G.A. Implementation of the particle strength exchange method for fragmentons to account for viscosity in vortex element method. Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2018, no. 3, pp. 48–67.
Kuzmina K.S., Marchevskii I.K., Moreva V.S. Vortex sheet intensity computation in incompressible flow simulation around an airfoil by using vortex methods. Mathematical Models and Computer Simulations, 2018, vol. 10, iss. 3, pp. 276–287.
Timofeev V.N. Mathematical modeling of separated subsonic flowaround axially symmetrical bodies with base pressure. Engineering Journal: Science and Innovation, 2014, no. 10. Available at: http://engjournal.ru/catalog/mathmodel/aero/1246.html (accessed October 17, 2017).
Timofeev V.N. Construction of a semi-infinite equivalent body in mathematical modeling of subsonic separated axisymmetric flow. Маthematical Modeling and Computational Methods, 2016, no. 4, pp. 67–83.
Timofeev V.N. Modeling of subsonic separation flow around bodies by the method of discrete vortices based on the concept of an equivalent surface with cubic splines. Маthematical Modeling and Computational Methods, 2020, no. 4, pp. 27–43.
Timofeev V.N. Mathematical simulation of the subsonic flow around the lengthening bodies with the flow separation in the region of ground shear with the use of an equivalent body. Journal of Physics: Conference Series, 2018, vol. 1141, art. no. 012095.
Rjgers D.F., Adams J.A. Mathematical elements for computer graphics. New-York, McGraw–Hill Science, 1989, 512 p.
Dimitrienko Yu.I. Tenzornoe ischislenie [Tensor calculus]. Moscow, Vysshaya shkola Publ., 2001, 576 p.
Lifanov I.K. Metod singulyarnykh integralnykh uravneniy i chislennyy eksperiment (v matematicheskoi fizike, aerodinamike, teorii uprugosti i difraktsii voln) [The method of singular integral equations and numerical experiment (in mathematical physics, aerodynamics, theory of elasticity and diffraction of waves)]. Moscow, LLP Yanus Publ., 1995, 520 p.
Timofeev V.N. Simulation of the subsonic detachable body with a bottom cut on the current pattern with an equivalent half-infinite surface at small angles of attack. Маthematical Modeling and Computational Methods, 2019, no. 4, pp. 31–49.
Timofeev V.N. Special features of vortex diagram in simulation of subsonic detached flow around the semi-infinite equivalent body. Mathematical Modeling and Computational Methods, 2017, no. 4, pp. 73–91.
Aubakirov T.O., Belotserkovskiy S.M., Zhelannikov A.I., Nisht M.I. Nelineinaya teoriya kryla i ee prilozheniya [Nonlinear wing theory and its applications]. Almaty, Gylym Publ., 1997, 448 p.


Тимофеев В.Н. Методика организации итерационного процесса при моделировании дозвукового отрывного обтекания удлиненных тел с применением эквивалентной поверхности и кубических сплайнов. Математическое моделирование и численные методы, 2021, № 4, с. 80–102.



Download article

Количество скачиваний: 106