539.3 Mathematical modeling of fatigue failure during high-frequency bending vibrations of titanium alloy specimens

Stratula B. A. (Institute for Computer Aided Design of the Russian Academy of Sciences)


doi: 10.18698/2309-3684-2021-4-4557

A unified numerical method for different fatigue fracture modes from low-cycle to very-high-cycle fatigue is described on the basis of a multi-mode two-criterion model of cyclic damage. This method allows for a through calculation of the evolution of crack-like fatigue fracture zones in a material, as well as an assessment of the durability of specimens from crack nucleation to macrofracture. Fatigue fracture calculations of titanium alloy specimens under prolonged cyclic loading under three-point bending scheme with development of "quasi-cracks" in modes from multi-cycle to super-multi-cycle fatigue have been carried out. Numerical and experimental results are compared to each other.

Lemaitre J., Chaboche J.L. Mechanics of solid materials. Cambridge, Cambridge University Press, 1994, 582 p.
Marmi, A.K., Habraken, A.M., Duchene, L. Multiaxial fatigue damage modelling at macro scale of Ti-6Al-4V alloy. International Journal of Fatigue, 2009, vol. 31, iss. 11–12, pp. 2031–2040.
Nikitin I.S., Burago N.G., Zhuravlev A.B., Nikitin A.D. Multimode model for fatigue damage development. Mechanics of Solids, 2020, vol. 55, iss. 8, pp. 1432–1440
Nikitin I.S., Burago N.G., Nikitin A.D., Stratula B.A. Complex model for fatigue damage development. AIP Conference Proceedings, 2020, vol. 2312, art no. 050015.
Smith R.N., Watson P., Topper T.H. A stress-strain parameter for the fatigue of metals. Journal of Materials, 1970, vol. 5, no. 4, pp. 767–778.
Gates N., Fatemi A. Multiaxial variable amplitude fatigue life analysis including notch effects. International Journal of Fatigue, 2016, vol. 91, pp. 337–351.
Carpinteri A., Spagnoli A., Vantadori S. Multiaxial assessment using a simplified critical plane based criterion. International Journal of Fatigue, 2011, vol. 33, pp. 969–976.
Burago N.G., Nikitin I.S. Multiaxial fatigue criteria and durability of titanium compressor disks in low- and very-high-cycle fatigue modes. Computational Methods in Applied Sciences, 2016, vol. 40, pp. 117–130.
Bourago N.G., Zhuravlev A.B., Nikitin I.S. Models of multiaxial fatigue fracture and service life estimation of structural elements. Mechanics of Solids, 2011, vol. 46, no. 6, pp. 828–838.
Xue H.Q., Tao H., Montembault F., Wang Q.Y., Bathias C. Development of a three-point bending fatigue testing methodology at 20 kHz frequency. International Journal of Fatigue, 2007, vol. 29, iss. 9–11, pp. 2085–2093.
Wang B., Cheng L., Cui W., Chen X., Wang C., Li D. Effect of forging process on high cycle and very high cycle fatigue properties of TC4 titanium alloy under three-point bending. Fatigue and Fracture of Engineering Materials and Structures, 2021, vol. 44, iss. 8, pp. 2054–2069.
Paris P., Erdogan F. A critical analysis of crack propagation laws. Journal of Fluids Engineering, Transactions of the ASME, 1963, vol. 85, iss. 4, pp. 528–533.
Collins J.A. Failure of materials in mechanical design: analysis, prediction, prevention. New-York, Wiley Press, 1993, 654 p.
Kachanov L.M. O vremeni razrusheniya v usloviyah polzuchesti [About the time of destruction in creep conditions]. Izvestiya AN SSSR. Otdelenie tekhnicheskih nauk [Izvestia of the USSR Academy of Sciences. Department of Technical Sciences], 1958, no. 8, pp. 26–31.
Worknov Yu.N. O mekhanizme dlitelnogo razrusheniya [On the mechanism of long-term destruction]. Voprosy prochnosti materialov i konstrukcij AN SSSR [Issues of strength of materials and structures of the USSR Academy of Sciences], 1959, p. 5–7.
Burago N.G., Nikitin I.S., Nikitin A.D., Stratula B.A. Algorithms for calculation damage processes. Frattura ed Integrità Strutturale, 2019, vol. 49, pp. 212–224.
Plekhov O., Naimark O. et al. The study of a defect evolution in iron under fatigue loading in gigacycle fatigue regime. Frattura ed Integrita Strutturale, 2016, vol. 10, pp. 414–423.
Shlyannikov V.N. Creep-Fatigue crack growth rate prediction based on fracture damage zones models. Engineering Fracture Mechanics, 2019, vol. 214, pp. 449–463.
Nikitin I.S., Burago N.G., Nikitin A.D., Stratula B.A. On kinetic model of damage development. Procedia Structural Integrity, 2020, vol. 28, pp. 2032–2042.
Nikitin I.S., Nikitin A.D., Stratula B.A. Study on the resonant torsion vibration in hourglass specimens under VHCF loading. Journal of Physics: Conference Series, 2021, vol. 1945, art. no. 012043.
Basquin O.H. The exponential law of endurance tests. Proceedings of the American society for testing and material, 1910, vol. 10, pp. 625–630.
Shanyavsky A.A. Modeling of fatigue cracking of metals. Ufa, Monograph Publ., 2007, 498 p.
Zavoichinskaya E.B. On the method of gas turbine blade resource estimation at asymmetric cyclic loading. Mathematical Models and Computer Simulations, 2020, no. 1, pp. 45–63.
Burago N.G., Nikitin I.S., Yakushev V.L. Hybrid numerical method with adaptive overlapping meshes for solving nonstationary problems in continuum mechanics. Computational Mathematics and Mathematical Physics, 2016, vol. 56, no. 6, pp. 1065–1074.
Burago N.G., Nikitin I.S. Algorithms of through calculation for damage processes. Computer Research and Modeling, 2018, vol.10, no. 5, pp. 645–666.

Стратула Б.А. Математическое моделирование усталостного разрушения при высокочастотных изгибных колебаниях образцов из титановых сплавов. Математическое моделирование и численные методы, 2021, № 4, с. 45–57.

Данное исследование выполнено в рамках Госзадания ИАП РАН.

Download article

Количество скачиваний: 139