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Математическое моделирование усталостного                          

разрушения при высокочастотных изгибных                            

колебаниях образцов из титановых сплавов  

© Б.А. Стратула 

ИАП РАН, Москва, 123056, Россия 

 

На основе мультирежимной двухкритериальной модели циклической                                   

повреждаемости описан единообразный численный метод расчета различных                  

режимов усталостного разрушения от малоцикловой до сверхмногоцикловой                  

усталости. Этот метод позволяет проводить сквозной расчет эволюции                         

трещиноподобных зон усталостного разрушения в материале, а также оценивать 

долговечность образцов от зарождения трещины до макроразрушения. Проведены 

расчеты усталостного разрушения образцов из титанового сплава при длительном 

циклическом нагружении по схеме трехточечного изгиба с развитием                                      

«квазитрещин» в режимах от многоцикловой до сверхмногоцикловой усталости. 

Проведено сравнение численных и экспериментальных результатов.  

 

Ключевые слова: сверхмногоцикловая усталость, повреждаемость, усталостное 

разрушение, высокочастотные колебания, титановый сплав 

 

Введение. В данной работе исследуется процесс развития                      

усталостных повреждений с использованием теории циклической                    

повреждаемости. В применении к задачам циклического нагружения 

и усталостного разрушения подход, основанный на теории                                    

повреждаемости, был применен в [1,2]. Мультирежимная модель               

развития усталостного разрушения с использованием эволюционного 

уравнения для функции повреждаемости была предложена в [3,4].               

Однокритериальная версия этого уравнения была описана в [3]. Затем 

в [4] была предложена двухкритериальная кинетическая модель                  

повреждаемости. Для определения коэффициентов кинетического 

уравнения повреждаемости использовались известные критерии                     

многоосного усталостного разрушения: критерий Смита-Ватсона-

Топпера (SWT) [5,6], в котором заложен механизм, связанный                                  

с развитием микротрещин нормального раскрытия, и критерий                   

Карпинтери-Спаньоли-Вантадори (CSV) [7], в котором заложен меха-

низм, связанный с развитием сдвиговых микротрещин. 

При сложном напряженном состоянии в используемой модели 

возможна реализация любого из рассмотренных механизмов развития 

трещин. 

Параметры модели определены для различных режимов                        

усталостного разрушения от МЦУ, МНЦУ до СВМУ [9]. На основе 

этой комплексной модели в [3,4] был предложен численный метод   

расчета трещиноподобных зон вплоть до макроразрушения. В данной 
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работе модель повреждаемости и численная процедура используются 

для воспроизведения результатов МНЦУ и СВМУ испытаний на 

трехточечный изгиб [10,11] и соответствующих экспериментальных 

усталостных кривых. 

Мультирежимная модель усталостного разрушения.                       

Классические представления линейной механики циклического                  

разрушения связывают условия развития усталостных трещин при 

увеличении числа циклов с амплитудами коэффициентов                           

интенсивности напряжений в вершине трещины на основе уравнения 

Парис и его модификаций [12,13]. 

Иной подход использует представления теории повреждаемости, 

заложенной в работах [14,15] и развитый в [1,16]. В приложении                

к задачам усталостного разрушения он применялся в [2–4,17–20]. 

В данной работе описывается мультирежимная модель развития 

усталостного разрушения, основанная на эволюционном уравнении 

для функции повреждаемости [3,4,19,20]. Предполагается, что                           

процесс повреждения материала связан с деградацией (ослаблением) 

его модулей упругости за счет нарастания количества внутренних 

микродефектов. При этом реализуются два механизма — развития 

микротрещин нормального отрыва или микротрещин сдвига. Им                    

соответствуют ассоциированные критерии многоосного усталостного         

разрушения при циклическом однородном нагружении. Усталостному 

разрушению при развитии поврежденности с микротрещинами                      

нормального отрыва соответствует критерий SWT [5,6],                                            

а усталостному разрушению при развитии поврежденности                                   

с микротрещинами сдвига соответствует критерий CSV [7]. 

Эти и иные многоосные критерии (см. обзор [9]) получены                              

обобщением закономерностей, установленных для одноосных нагру-

жений и описываемых усталостными S N  кривыми типа Веллера и 

соотношениями типа Баскина [21]. В [8] был предложен подход для 

экстраполяции многоосных критериев разрушения, построенных для 

режима МНЦУ, на правые ветви усталостных кривых в режиме 

СВМУ, и использующий опорные точки каждой из ветвей и обратную 

степенную зависимость от числа циклов N для выхода на асимптоту 

предела усталости. 

Для выделения различных режимов усталостного разрушения               

используется схема мультирежимной (бимодальной) усталостной                 

кривой с амплитудой 
a  при одноосном нагружении, представленная 

на рис. 1. Вплоть до значения 2 310 10iN   реализуется режим                       

повторно-статического нагружения с амплитудой, мало отличаю-

щейся от статического предела прочности B . Сами эти режимы на 

левой ветви усталостной кривой отделяются величиной амплитуды 
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нагружения, равной пределу текучести материала T . Затем                             

начинается зона смены механизмов разрушения и дальнейшее падение 

усталостной прочности, начиная с величин 810N , до нового           

предельного значения 
u  в соответствии с правой ветвью бимодаль-

ной усталостной S N  кривой. Эта ветвь описывает режим                           

СВМУ [22]. 

Граница повторно-статического диапазона 2 310 10iN   103                    

довольно условна. Она уточняется в зависимости от прочностных и 

пластических характеристик материала.  

 

 
 

 

Рис. 1. Схема режимов усталостного разрушения на основе                                             

бимодальной усталостной кривой 

 

Сформулируем аналитически мультирежимную модель развития 

повреждений при циклическом нагружении, все основные положения 

которой ранее были развиты в [3,4,19]. 

При ее изложении мы ограничимся рассмотрением только части 

левой ветви усталостной кривой в режиме МНЦУ (напряжения                                

не превышают предела текучести) и, следовательно, задачу                              

определения напряженного состояния в пределах цикла нагружения 

можно решать в упругой постановке. 

В общем виде в результате обобщения соотношения Баскина [21]  

на случай многоосного нагружения для описания классической                     

(левой) ветви усталостной кривой многоосный критерий в режиме 

МНЦУ выглядит следующим образом: 

 ,L

eq u LN        (1) 

где eq  — эквивалентное напряжение, обобщающее понятие                            
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амплитуды при одноосном циклическом нагружении на случай                

многоосного нагружения, для выбранного критерия усталостного              

разрушения, а 
L  — показатель, характеризующие степень                     

ниспадания левой ветви бимодальной усталостной кривой. 

Из условия перехода от повторно-статического режима к левой 

ветви усталостной кривой на уровне амплитуды напряжений для                     

реверсивного цикла 
a B   получается значение для коэффициента 

L  (для определенности выбрано значение 310iN  ): 

  310 .L

L B u

      

В этих формулах B  — статический предел прочности материала, 

u  — классический предел усталости материала при реверсивном 

цикле (коэффициент асимметрии цикла 
min max 1R     ). 

С учетом подхода [8] для экстраполяции многоосных критериев 

разрушения на режим СВМУ путем замен B u  , u u                   

получаются многоосные критерии усталостного разрушения в режиме 

СВМУ: 

 .V

eq u V N
   

    (2) 

Из условия перехода от левой ветви бимодальной усталостной 

кривой к правой ветви СВМУ на уровне амплитуды напряжений для 

реверсивного цикла 
a u   при 810N   получается значение                 

коэффициента V : 

  8
10 ,V

V u u

      

где V  — показатель, характеризующий степень ниспадания правой 

ветви бимодальной усталостной кривой. 

Кинетическое уравнение для функции повреждаемости материала 

 , предложенное в [3,4,19], имеет вид: 

    1, 1 .N B              (3) 

Интегрирование при однородном напряженном состояния                             

до величины 1  , соответствующей полному разрушению матери-

альной частицы, дает значения коэффициента B [3,4,19]: 

 при u u eq B       (режим МНЦУ,  510 L

u B u

      ) 

    
1/

310 1 2;
L

L eq u B uB B


          
    



Математическое моделирование усталостного разрушения… 

49 

 при u eq u u       (режим СВМУ) 

    
1/

310 1 2;
V

L eq u u uB B


          
 

  

 при eq u   усталостного разрушения не происходит, при 

eq B   оно наступает мгновенно. 

Значение коэффициента 0 1   определяется по результатам               

согласования расчетных и экспериментально построенных                                   

усталостных кривых, ( )f fH f , ( )H f  — функция Хэвисайда. 

Выражения для эффективных напряжений eq  определяются                

выбранными критериями полного усталостного разрушения для двух 

типов повреждаемости, связанных с механизмами развития                                  

микротрещин нормального отрыва или сдвига.  

Многоосный критерий SWT описывает усталостное разрушение с 

развитием повреждений в виде микротрещин нормального отрыва 

[5,6,19]: 

 
max1 1 2 ,L

u LN     
     (4) 

где 
max1  — максимальное значение главного (растягивающего)                

напряжения, 
1  — его размах в цикле нагружения. 

Следовательно, в этом случае: 

  
max max max max1 1 1 1 12 .n

eq H             

Многоосный критерий CSV описывает усталостное разрушение с 

развитием повреждений в виде микротрещин сдвига [7,19]:   

    
2 2

2 3 2 ,L

n n u LN            (5) 

здесь n  — размах касательного напряжения на площадке, где оно 

достигает максимального значения (критической площадке), n  — 

размах нормального напряжения на этой площадке. 

В этом случае: 

 
   

 
max

2 2
2 3 2 ,

.

eq n n

n n nH

   

  

    

  

  

Предполагается, что начальное зарождение зоны повреждения в 

частице материала с ростом числа циклов нагружения, связанное                  

с появлением отличного от нуля значения коэффициента B  в                      
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кинетическом уравнении, происходит при каком-то значении 

 max ,n

eq

    и определяет дальнейший тип повреждаемости в 

этой частице по механизму развития микротрещин нормального                  

отрыва, если  max ,n n   , или по механизму развития                           

микротрещин сдвига, если  max ,n     . 

Развитие повреждаемости в материальной частице приводит                

к эффективному уменьшению модулей упругости     и    ,                     

в общем случае по нелинейному закону, а в используемом варианте 

модели — по кусочно-линейному закону следующего вида:  

 деградация материала при *    

        0 01 , 1 ;             (6) 

 полное разрушение при 
* 1     

 0, 0.     

Здесь * 1   — критическое значение повреждаемости,                              

при котором наступает состояние полного разрушения (рис. 2).  
Алгоритм численного расчёта повреждаемости. Численный          

метод расчета зон повреждаемости заключается в пошаговом (по           
циклам нагружения) расчете упругого напряженного состояния             

образца материала или элемента              
конструкции, параллельно с числен-
ным решением нелинейного уравнения 
для повреждаемости (3) и корректиров-
кой модулей упругости среды                         
в областях, где функция                                       
повреждаемости отлична от нуля (6). 
Такие области становятся дополни-
тельными концентраторами напряже-
ний, а локализованные зоны полного 
разрушения в указанном выше смысле 
трактуются как квазитрещины. Выход 
квазитрещин на границы нагружаемого 

тела рассматривается как его окончательное макроразрушение. 
Для интегрирования уравнения (3) применялась аппроксимация 

функции повреждаемости в k  узле расчетной сетки при заданных 

дискретных значениях n

k  в моменты nN  и искомых значениях 1n

k   в 

моменты 1nN  . 
Была применена схема аппроксимации нелинейного уравнения 

для повреждаемости, построенная на пошаговом аналитическом                   

 
 

Рис. 2. Нелинейная                     

зависимость модулей упругости 

от функции повреждаемости. 

Состояние полного разрушения                    

достигается при 
* 1    

* 1 

0


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интегрировании кинетического уравнения при фиксированном                
напряженном состоянии с предыдущего шага расчета по циклам 
нагружения: 

    
1

1
1 2(1 )1 2 1 ,

n
n

k

n
n
k

Nn

N
B N


 


   




         

где k   номер узла расчетной сетки, n  номер шага по числу циклов. 
Такой алгоритм соответствует явно-неявной схеме (явной по расчету 
поля напряжений и неявной по расчету функции повреждаемости). 

Формула для функции повреждаемости на верхнем слое имеет 
вид: 

     

1/(1 )
2

1
1 1 1 2 1 ,n n n n

k k B N





  






 
       
 

  (7) 

шаг расчета по числу циклов определяется следующим образом: 

 
   

1
1 2(1 )1 2 1 ,

min 0,5 .

n
k

n n

k

n n

k
k

N B

N N

 


          

  
  (8) 

При численной реализации коэффициент Пуассона материала не 
меняется, а модуль упругости Юнга с ростом функции                                     
повреждаемости уменьшается по закону, в котором заложено его                
малое остаточное значение в состоянии полного разрушения, равное 
(для определенности) тысячной доле от начального значения: 

     1 1 1

0 *1 0,001 .n n n

k k kE E H          (9) 

Такой алгоритм позволяет вести сквозной расчет усталостного 
разрушения с образованием и распространением квазитрещин без их 
явного выделения и на фиксированной сетке. 

Упругие расчеты цикла нагружения в квазистатическом режиме 
(МНЦУ) и в динамическом режиме (высокочастотные осцилляции, 
СВМУ) выполнялись с помощью пакетов программ АСТРА и ANSYS. 
Расчёт в динамическом режим, не смотря на возможность простого 
ввода коэффициента динамичности в квазистатику, позволяет так же 
оценить резонансные частоты образца, а так же дрейф этих частот по 
мере развития повреждаемости. Это может быть полезно                                    
при использовании подхода, изложенного в [23]. Пакет АСТРА                         
разработан на основе безматричного варианта МКЭ и применялся для 
решения широкого круга задач механики сплошных сред [24,25]. 

Пакеты были дополнены кодом для расчета кинетики усталостной 

повреждаемости и изменения модулей упругости в соответствии                          

с изложенным выше алгоритмом. 
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Результаты расчёта. Для определения влияния предложенной 

схемы на усталостное поведение образца была проведена серия                     

численных экспериментов. Были проведены расчеты усталостного 

разрушения образцов при циклическом нагружении по схеме                        

трехточечного изгиба с развитием трещиноподобных зон разрушения 

в режимах от МНЦУ до СВМУ. Аналитический расчет                             

геометрических и частотных параметров этой схемы нагружения в 

упругом режиме приведен в [10]. 

Было проведено сравнение численных расчётов и результатов 

натурных экспериментов с титановым сплавом Ti-6Al-4V.                                 

Использованы экспериментальные результаты, полученные                          

по методике [11] при частоте нагружения 20 кГц. Физические                           

и прочностные свойства следующие: 900 МПаB  , 245 МПаu  , 

185 МПаu  , 34500 кг м  , 0,37  , 0,38L  , 0,33V  . Для 

расчетов взяты значения параметров модели 0,5  , 0,5  , 

* 0,98  . 

Размер бруса составляет 26 6,5 3 мм  . Расчетная сетка                                

с высокочастотной схемой нагружения показана на рис. 3. Расстояние 

между узлами конечно-элементной сетки образца в центре составляет 

0,4 мм , а по краям — 0,8 мм . 

Поля напряжений при различных значениях числа циклов, а также 

развитие зон усталостного повреждения ("квазитрещины"                                 

нормального отрыва) показаны на рис. 4, 5 серым цветом. Расчеты                    

показали, что после момента прохождения квазитрещины примерно 

половины пути до границы образца, дальнейший ее выход на границу 

происходит лавинообразно, и его можно считать моментом                                 

практического макроразрушения.  

Аналогичными расчетами многих вариантов амплитуд                             

циклического нагружения бруса при трехточечном изгибе были                        

получены точки амплитудной усталостных кривых, полученных при 

испытаниях на трехточечный изгиб [11] Результаты численного                      

моделирования показаны на рис. 6. 
 

 
Рис. 3. Расчетная сетка и схема высокочастотного нагружения 
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а б 

Рис. 4. Поле эффективных напряжений в начальный момент: 

 а — при зарождении квазитрещины; б — 93,249 10  циклов 

 

  
а б 

Рис. 5. Поле эффективных напряжений в момент развития квазитрещины: 

 а — 93,25 10  циклов от начала и 61,1 10  циклов от момента зарождения;               

б — в момент разрушения образца, 61,3 10  циклов от момента зарождения 

 

 
 

Рис. 6. Расчетная кривая усталости (черные прямоугольники)                                                    

и экспериментальные данные [11] 

Экспериментальные результаты, полученные для титанового 

сплава с различными технологиями термической обработки, отмечены 

цветами на рис. 6. Влияние этих технологий обработки не учитывается 

в используемой модели. Полученная расчетная усталостная кривая             

хорошо коррелируют с усредненными экспериментальными данными.  

Поскольку усталостные кривые, построенные по точкам разных 

цветов (т.е. по способам обработки исходных сплавов), хорошо              

разделяются, то их также не сложно воспроизвести. Для этого нужно 

немного уточнить параметры модели B , 
u , 

u  в соответствии с 
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усталостными кривыми, разделенными по способам обработки сплава. 

Отметим также, что рассматриваемый диапазон циклических                      

испытаний охватывает диапазон от 510N  до 910N  (режимы 

МНЦУ и СВМУ, соответственно), при этом численное моделирование 

усталостных экспериментов для трехточечного изгиба проводилось в 

рамках модели циклической повреждаемости с использованием                       

единообразной численной процедуры. 

Заключение. Сформулирована двухкритериальная кинетическая 

модель повреждаемости для описания развития процесса усталостного 

разрушения при циклическом нагружении. На её основе предлагается 

процедура расчета коэффициентов кинетического уравнения для                   

различных режимов усталостного разрушения от малоцикловой до 

сверхмногоцикловой усталости. 

Для численного решения уравнения повреждаемости и расчета 

развития трещиноподобных зон используется неявная схема.                          

Оценивается долговечность образцов от зарождения усталостного                     

разрушения до макроразрушения. 

Проведены расчеты усталостного разрушения образцов при                  

циклическом нагружении по схеме трехточечного изгиба с развитием 

трещиноподобных зон разрушения в режимах от МНЦУ до СВМУ. 

Проведено сравнение численных и экспериментальных результатов 

для образцов из титановых сплавов. 
Данное исследование выполнено в рамках Госзадания ИАП РАН. 
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alloy specimens  
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A unified numerical method for different fatigue fracture modes from low-cycle                                   

to very-high-cycle fatigue is described on the basis of a multi-mode two-criterion model of 

cyclic damage. This method allows for a through calculation of the evolution of crack-like 

fatigue fracture zones in a material, as well as an assessment of the durability of specimens 

from crack nucleation to macrofracture. Fatigue fracture calculations of titanium alloy 

specimens under prolonged cyclic loading under three-point bending scheme                                      

with development of "quasi-cracks" in modes from multi-cycle to super-multi-cycle fatigue 

have been carried out. Numerical and experimental results are compared to each other.  
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