629.762 Some examples of numerical simulation of unsteady gas dynamical phenomena for the purpose of lifting vehicles design

Plyusnin A. V. (Bauman Moscow State Technical University)

GAS FLOW, GAS DYNAMICAL EJECTION, CANISTER, LIFTING VEHICLE, NUMERICAL SIMULATION


doi: 10.18698/2309-3684-2020-4-4460


The problem of unsteady gas flow between two volumes has been considered for the spatial and for the engineering formulations. The comparison of the two solutions has been presented which allows to assess the accuracy of the engineering approach usually utilized in practical calculations. The problem has been also considered of the determination of the unsteady force acting on the bottom of the canister at the stage of the lifting vehicle exit in the process of the gas dynamical ejection. The numerical simulation of the spatial problems has been completed in accordance with the classical Godunov’s method including the moving grid technique.


[1] Leonov A.G., Prokhorchuk Yu.A. Structural and aerodynamic features of high-supersonic–speed cruise missiles. Engineering Journal: Science and Innovation: Electronic Science and Engineering Publication, 2013, no. 3 (15). DOI: 10.18698/2308-6033-2013-3-618
[2] Grumonds V.T., Polovinkin V.V., Yakovlev G.A. Teoriya dvizheniya dvusrednyh apparatov. Matematicheskie modeli i metody issledovaniya [Theory of motion of two-medium apparatuses. Mathematical models and research methods]. Moscow, Vuzovskaya kniga Publ., 2012, 644 p.
[3] Degtyar V.G., Pegov V.I. Gidrodinamika podvodnogo starta raket [Hydrodynamics of underwater rocket launch]. Moscow, Mashinostroenie Publ., 2009, 448 p.
[4] Shcheglov G.A. Modification of method of vortex elements for calculation of hydrodynamic characteristics of smooth bodies. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2009, no. 2, pp. 26–35.
[5] Dergachev S.A., Marchevsky I.K., Shcheglov G.A. Flow simulation around 3D bodies by using Lagrangian vortex loops method with boundary condition satisfaction with respect to tangential velocity components. Aerospace Science and Technology, 2019, vol. 94, art no. 105374.
[6] Marchevsky I.K.,Shcheglov G.A. Efficient semi–analytical integration of vortex sheet influence in 3d vortex method. 5th International Conference on Particle–Based Methods — Fundamentals and Applications, PARTICLES, 2017, pp. 703–714.
[7] Bratchev A.V., Vatolina E.G., Gorsky V.V., Zabarko D.A., Kovalenko V.V., Kotenev V.P., Polezhaev Yu.A., Sakharov V.I. Matematicheskoe modelirovanie teplovyh i gazodinamicheskih processov pri proektirovanii letatel'nyh apparatov [Mathematical modeling of thermal and gas-dynamic processes in the design of aircraft.] Moscow, BMSTU Publ., 2011, 216 p.
[8] Gorsky V.V. Teoreticheskie osnovy rascheta ablyacionnoj teplovoj za-shchity [Theoretical bases of calculation of ablative thermal protection]. Moscow, Nauchnyj mir Publ., 2015, 688 p.
[9] Zarubin V.S. Prikladnye zadachi termoprochnosti elementov konstrukcij [Applied problems of thermal strength of structural elements]. Moscow, Mashinostroenie Publ., 1985, 294 p.
[10] Dimitrienko Yu.I. Mekhanika kompozitnyh konstrukcij pri vysokih temperaturah [Mechanics of composite structures at high temperatures]. Moscow, Fizmatlit Publ., 2018, 448 p.
[11] Dimitrienko Y.I., Koryakov M.N., Zakharov A.A. Stroganov A.S. Computational modeling of conjugated gasdynamic and thermomechanical processes in composite structures of high speed aircraft. Маthematical Modeling and Coтputational Methods, 2014, no. 3, pp. 3–24.
[12] Sokolovsky M. I., Petrenko V. I., Zykov G. A., etc. Upravlyaemye energeticheskie ustanovki na tverdom raketnom toplive [Controlled power plants based on solid rocket fuel]. Moscow, Mashinostroenie Publ., 2003, 464 p.
[13] Dimitrienko Yu. I., Kulagin Yu. A., Yarmola A. P. Modelirovanie gazodinamicheskih processov v kamerah sgoraniya dvigatelej s anizotropnymi tverdymi toplivami [Modeling of gas-dynamic processes in combustion chambers of engines with anisotropic solid fuels]. Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2011, no. S3, pp. 100–109.
[14] Arzumanov Yu.L., Petrov R.A., Khalatov E.M. Sistemy gazosnabzheniya i ustrojstva pnevmoavtomatiki raketno-kosmicheskih kompleksov [Gas supply systems and pneumatic automation devices of rocket and space complexes]. Moscow, Mashinostroenie Publ., 1997, 464 p.
[15] Arzumanov Yu.L., Khalatov E.M., Chekmazov V.I. Matematicheskie mo-deli sistem pnevmoavtomatiki [Mathematical models of pneumatic automation systems]. Moscow, BMSTU Publ., 2009, 296 p.
[16] Gogrichiani G.V., Shipilin A.V. Perekhodnye processy v pnevmaticheskih sistemah [Transient processes in pneumatic systems]. Moscow, Mashinostroenie Publ., 1986, 160 p.
[17] Plyusnin A.V. Pressurization parameters simulation of container empty space during aircraft gas dynamic ejection considering real gas properties. Маthematical Modeling and Coтputational Methods, 2016, no. 3, pp. 53–78.
[18] Plyusnin A.V. K voprosu ob opredelenii dostatochnogo kolichestva gaza dlya predva-ritel'nogo nadduva puskovogo kontejnera pri podvodnom gazodina-micheskom vybrose LA [On the issue of determining a sufficient amount of gas for pre-pressurization of the launch container during an underwater gas-dynamic release of an aircraft]. Sbornik trudov konferencii «XLI Akademicheskie chteniya po kosmonavtike, posvyashchennye pamyati akademika S. P. Korolyova i drugih vydayushchihsya otechestvennyh uchenyh — pionerov osvoeniya kosmicheskogo prostranstva» [Proceedings of the conference «XLI Academic space conference, dedicated to the memory of academician S. P. Korolev and other outstanding national scientists — pioneers of space exploration»], 2017, pp. 516–517.
[19] Plyusnin A.V. Calculation of aircraft gas-dynamic ejection systems with due consideration of the secondary combustion effects. Маthematical Modeling and Coтputational Methods, 2014, no. 3, pp. 55–73.
[20] Plyusnin A.V. Mathematical simulation of the process of water entering the annular space of a canister during submarine gas–driven aircraft ejection. Маthematical Modeling and Coтputational Methods, 2017, no. 2, pp. 39–64.
[21] Sedov L.I. Mekhanika sploshnoj sredy. T.2. [Mechanics of a continuous medium. Vol. 2.] St. Petersburg, Lan Publ., 2004, 560 p.
[22] Idelchik I.E. Spravochnik po gidravlicheskim soprotivleniyam [Handbook of hydraulic resistances]. Moscow, Mashinostroenie Publ., 1992, 672 p.
[23] Godunov S.K., Zabrodin A.V., Ivanov M.Ya., Kraiko A.N., Prokopov G.P. Chislennoe reshenie mnogomernyh zadach gazovoj dinamiki [Numerical solution of multidimensional problems of gas dynamics]. Moscow, Nauka Publ., 1976, 400 p.
[24] Zarubin V.S., Kuvyrkin G.N. Special features of mathematical modeling of technical instruments. Маthematical Modeling and Computational Methods, 2014, no. 1, pp. 5–17.
[25] Plyusnin A.V., Bondarenko L.A., Sabirov Yu.R. Analiz gazogidrodinamicheskikh protsessov i metodov ikh rascheta na osnove opyta predpriyatiya v otrabotke podvodnogo minometnogo starta [Analysis of gas and hydro dynamic processes and their calculating methods on the basis of the enterprise experiments in underwater mortar launch tests]. Raketnyye kompleksy i raketno-kosmicheskiye sistemy — proyektirovaniye, eksperimentalnaya otrabotka, letnyye ispytaniya, ekspluatatsiya. Trudy sektsii 22 im. akad. V.N. Chelomeya XXXIX Akademicheskikh chteniy po kosmonavtike [Rocket and space-rocket systems — designing, experimental tests, flight tests, exploitation. Proceedings of the 22nd section named after acad. V.N. Chelomei of the XXXIX Academic Space Technology Readings], Reutov, 2015, pp. 74–83.


Плюснин А.В. Некоторые примеры численного моделирования нестационар-ных газодинамических явлений в обеспечение проектирования летательных аппа-ратов. Математическое моделирование и численные методы, 2020, № 4, с. 44–60.