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Рассмотрена задача о неустановившемся перетекании газа между двумя поло-

стями в пространственной и инженерной постановках. Представлено сопоставле-

ние двух решений, позволяющее оценивать точность инженерного подхода, обычно 

используемого при практических расчетах. Рассмотрена также задача об опреде-

лении неустановившегося силового воздействия на дно пускового контейнера на 

этапе выхода из него летательного аппарата в процессе газодинамического вы-

броса. Численное моделирование пространственных задач выполнялось в соответ-

ствии с классическим методом С.К. Годунова, в том числе, с использованием тех-

ники подвижных сеток. 
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Введение. Процесс проектирования летательных аппаратов (ЛА) 

сопровождается расчетами разнообразного характера, целью которых 

являются, например, выбор оптимальных траекторий движения [1, 2], 

определение аэродинамических характеристик [3–6] и параметров 

аэродинамического нагрева [7], теплопрочностные расчеты [8–11], 

расчеты параметров функционирования силовых установок и других 

систем ЛА [12–16], расчеты параметров стартовых процессов [17–20]. 

Довольно часто приходится выполнять расчеты процессов, в             

которых имеет место перетекание газовой среды из одного объема (по-

лости), с первоначально более высоким давлением, в другую полость 

или же в окружающую среду. По большей части такие расчеты прово-

дятся на инженерном уровне точности, т.е. в квазистационарной                 

постановке [21, 22]. Для проектных целей интересны максимальные 

перепады давления на стенках полостей, а также продолжительность 

процесса. Фактическая точность таких расчетов экспериментально ис-

следуется редко. Классические руководства, в частности, работы [21, 

22], в которых приводятся и, тем самым, как бы неявно рекомендуются 

соответствующие формулы, основанные на предположении об                     

«установившемся адиабатическом обратимом истечении из большого 

сосуда», не дают подробной информации о допустимости и точности 

применения этих формул в интересующих нас условиях. Пример же 

расчета [18], в частности, показывает, что для правильного                               
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определения запаса газа в баллоне высокого давления (в целях полу-

чения необходимого конечного давления в наддуваемой полости) сле-

дует учитывать, как свойства реального газа, так и отбор тепла газом 

от стенок баллона. При этом оказывается, что в рамках инженерного 

подхода мы получили бы примерно тот же конечный результат, если 

бы процесс истечения газа рассматривали в изотермической поста-

новке, что, по большому счету, совсем не соответствует реальному фи-

зическому процессу. 

В литературе прикладного характера [14–16] в качестве основного 

рецепта решения рассматриваемого класса задач, предлагается                  

численно решать соответствующие системы уравнений газовой дина-

мики. Таким образом, чтобы сделать более или менее определенные 

выводы относительно качества инженерного приближения, целесооб-

разно применить оба подхода и сопоставить полученные результаты. 

Подобному сопоставлению посвящен первый раздел данной ра-

боты. Численно, классическим методом С.К. Годунова [23], решается 

задача о перетекании газа между двумя плоскими объемами единич-

ной толщины. Затем при тех же величинах объемов, площади проход-

ного сечения между ними, начальных значениях параметров среды 

процесс перетекания газа рассчитывается в квазистационарной                   

пространственно–нульмерной постановке, соответствующей инже-

нерному подходу. Сравнение параметров проведено по среднеобъем-

ным значениям. Кроме того, приводятся текущие максимальные и ми-

нимальные значения давления и температуры среды в объемах, а 

также параметры, характеризующие балансы массы и полной энергии. 

Во втором разделе данной работы рассмотрена отчасти сходная 

задача об определении нестационарного силового воздействия на дно 

пускового контейнера (ПК) в процессе выхода из него кормы ЛА. При 

этом основными характеристиками процесса, помимо его продолжи-

тельности, являются максимальный темп спада силового воздействия, 

а также максимальная величина отрицательной нагрузки в том случае, 

если в донной части ПК возникает разрежение. 

Модель квазистационарного истечения в данном случае совсем не 

подходит, в любом случае она не позволяет предсказывать эффект раз-

режения. В рамках методологии [24] следующей по мере усложнения 

математического описания является модель одномерного истечения 

газа. Соответственно, в простейшей постановке, позволяющей, од-

нако, получить оценку величины разрежения в донной части ПК, было 

выполнено численное моделирование процесса истечения газовой 

среды из ПК в продолжающую его трубу. 

Чтобы приблизиться к воспроизведению реальных физических 

процессов, необходим, конечно, переход к численному моделирова-

нию в пространственной постановке. При этом следует принимать 
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также во внимание темп ухода ЛА от выходного сечения ПК.                             

Соответствующая задача была рассмотрена в осесимметричной поста-

новке. Расчеты проводились методом С.К. Годунова на подвижной 

сетке. В расчетах учитывалось различие свойств газовой среды, пер-

воначально заполняющей ПК, и наружной среды. Эффект вторичного 

догорания [19], однако, не моделировался. 

Численное моделирование перетекания газа между двумя по-

лостями. Пусть имеются две прямоугольные полости единичной тол-

щины в направлении оси  Oz  прямоугольной декартовой системы ко-

ординат Oxyz  (рис. 1, б), заполненные азотом при температуре 

290 KT   и начальных значениях относительного давления 4p   и 

1p  , выраженного в безразмерных единицах, соответственно. 

 

 

 

 

 

 

а б 

 
Рис. 1. Схема расчета перетекания газа между полостями: 

1 — полость; 2 — полость; 3 — проходное сечение между полостями 
а — в инженерной постановке; б — в двумерной постановке 

 

Параметры течения, возникающего в результате разгерметизации 

полости 1, определялись численным интегрированием уравнений               

газовой динамики по классической разностной схеме С.К. Годунова 

[23]. Области 1, 2 разбивались при этом соответственно на 100 10  и   

100 110  квадратных ячеек. Результаты вычислений представлены на 

рис. 2–5. 

На рис. 2, 3 приведены зависимости от времени t  среднеобъемных 

по полостям 1, 2 давлений и температур газа. Кроме того, на этих                    

рисунках построены текущие максимальные и минимальные значения 

этих параметров по соответствующим объемам. 

На рис. 4 показаны составляющие общего баланса массы и полной 

энергии газа. На рис. 5 построена зависимость от времени текущей                     

кинетической энергии газа в объемах 1, 2 и их суммарное значение. 
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Рис. 2. Изменение относительного давления p    

в полостях 1 (а) и 2 (б) от относительного времени t : 

1 — текущее минимальное значение; 2,3 — текущее среднеобъемное значение; 
4 — максимальное значение; 

1,2,4 соответствуют пространственному расчету, 
3 соответствует инженерному расчету 
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Температура 
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Рис. 3. Температура газа (К) в полостях в полостях 1 (а) и 2 (б)  

в функции относительного времени t : 

1 — текущее минимальное значение; 2,3 — текущее среднеобъемное значение; 
4 — текущее максимальное значение; 

1,3,4 соответствуют пространственному расчету, 
2 соответствует инженерному расчету 
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Рис. 4. Зависимость составляющих баланса массы газа (кг) (а) и  

полной энергии газа (Дж) (б) от относительного времени t : 

1,2 — полость 1; 3,4 — полость 2; 5 — суммарное значение; 
1,3,5 соответствуют пространственному расчету, 

2,4,5 соответствуют инженерному расчету 
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Кинетическая энергия газа 

 
 

Время 

 

Рис. 5. Изменение кинетической энергии газа (Дж) 

от относительного времени t : 

1,2 — полость 1; 3,4 — полость 2; 5 — суммарное значение 

 

Геометрическая схема расчета в инженерной постановке иллю-

стрируется на рис. 1, а. Чтобы записать соответствующие этой поста-

новке математические соотношения, введем, в дополнение к ранее                   

использованным обозначениям, следующие: R  — газовая постоянная, 

PC , 
V PC C R    — удельные теплоемкости при постоянном давлении 

и объеме, 
P VC C   — показатель изоэнтропы газа; m ,  , E  — 

масса, занимаемый объем, полная энергия газа;   — площадь проход-

ного сечения между двумя полостями. Номера полостей будем отме-

чать индексами 1, 2. 

В этих обозначениях система уравнений, описывающих инженер-

ный подход, имеет вид [21, 22, 19]: 
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Расчеты по данным соотношениям проводились методом Рунге–

Кутта. Результаты расчетов представлены на рис. 2–4. 

Как уже отмечалось, основными параметрами, учитываемыми при 

проектировании ЛА, являются давление газа и длительность процесса 

перетекания. По результатам, приведенным на рис. 2, можно заклю-

чить, что в целом значения этих параметров, полученные в инженер-

ном расчете и методом вычислительной газовой динамики, согласу-

ются удовлетворительно. Выравнивание давления по объему каждой 

из полостей происходит довольно быстро, быстро устанавливаются 

также конечные значения массы и полной энергии газа (рис. 4). 

По температуре газа такого выравнивания не происходит, что, 

впрочем, можно наблюдать и в других процессах [25]. Учитывая ре-

зультаты работы [18], можно утверждать, что прогнозирование темпе-

ратуры в обоих решениях нельзя считать корректным, поскольку и та 

и другая постановка задачи рассматривает течение газа как адиабати-

ческое и не учитывает теплообмен на стенках полостей. В самом деле, 

для отсеков и агрегатов ЛА характерны развитые поверхности кон-

такта с заключенной внутри них газовой средой. Поэтому за характер-

ное время процесса истечения газа приращение энергии, связанное с 

нагревом или охлаждением стенок объема, не является пренебрежимо 

малым по сравнению с характерным изменением в этом процессе 

внутренней энергии газа. 

Численное моделирование силового воздействия на дно ПК 

при выходе из него ЛА. Газодинамический выброс ЛА из ПК по                                

минометной схеме осуществляется, главным образом, за счет давле-

ния продуктов сгорания стартовых энергоустройств [19,25]. Поэтому 

в момент, когда корма ЛА покидает ПК, внутри ПК обычно еще сохра-

няется значительное избыточное давление. Процесс стравливания из-

быточного давления при раскрытии ПК протекает быстро. В резуль-

тате при определенных условиях давление в донной части ПК может 

упасть ниже наружного атмосферного давления, и этот фактор прихо-

дится учитывать при проектировании пусковых установок. 

Уравнения инженерной математической модели, приведенные в 

предыдущем разделе, могут быть адаптированы для расчета процесса 

стравливания газа из ПК в процессе его раскрытия. Однако, как легко 

видеть из соотношения (1), в момент, когда среднеобъемное давление 

внутри ПК снижается до значения внешнего давления 
атмp , величина 

 G t  становится равной нулю, и истечение газа наружу прекращается. 

Таким образом, как это уже было отмечено во введении, применение 

инженерного подхода, основанного на квазистационарном приближе-

нии, не позволяет ни выявить, ни оценить количественно эффект раз-

режения в ПК. 
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Чтобы воспроизвести инерционный эффект, не учитываемый в 
квазистационарном приближении, воспользуемся методами вычисли-
тельной газодинамики. Простейшая вычислительная модель соответ-
ствует расчету раскрытия ПК в одномерной постановке (рис. 6). Будем 

предполагать, что в момент 0t   раскрытия ПК его объем заполнен 

продуктами сгорания, имеющими начальное давление 
0p  и темпера-

туру 
0T , причем, как правило, 

0 атмp p , 
0 атмT T , где 

атмT  — есте-

ственная температура окружающей среды вне ПК. В наших расчетах 
не будет учитываться процесс догорания продуктов сгорания при их 
контакте с атмосферным воздухом, однако различие термодинамиче-
ских свойств этих сред учитывается. В том случае, когда в одной и той 
же расчетной ячейке присутствуют оба газа, термодинамические свой-
ства смеси соответствуют предположению об их идеальном смешении 
[19]. При расчете в рамках разностного метода С.К. Годунова потоков 
массы, импульса и энергии между соседними ячейками решение за-
дачи распада разрыва учитывает различие свойств газов, заполняю-
щих эти ячейки. 

В рамках одномерной модели 
расчета далее предполагается, что 

атмосферная среда в момент 0t    
заполняет область, являющуюся как 
бы продолжением ПК. В результате 
численного расчета получаем для 
различных моментов времени                 
значения в каждой ячейке плотно-
стей смеси газов   и ее компонент 

возд , 
пс , давления p , темпера-

туры T , а также компоненты скоро-

сти 
zv . Индексы возд , пс  соответ-

ствуют воздуху и продуктам сгора-

ния. При этом имеем 
возд пс    , 

возд
воздс




 , пс

псс



 , где 

воздс ,                 

псс  — массовые концентрации ком-

понент смеси. 
Постановка задачи простран-

ственного моделирования показана 
на рис. 7 для меридионального сече-

ния Orz , проведенного через ось 

симметрии Oz . В момент 0t   

корма ЛА, движущегося со скоро-

стью V , отрывается от края ПК, и 

 

 
Рис. 6. Раскрытие ПК в одномерной 

 постановке:1,4 — стенка ПК и 
 ее искусственное продолжение; 

 2,6 –— передние фронты 
 возмущений; 3 — начальная 

 граница раздела сред; 
5 — ячейка расчетной сетки 

z
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заполнявшие его до этого момента продукты сгорания вырываются в 
окружающее пространство. Расчетная область состояла в этом расчете 

из двух подобластей. Область 
0 1 2 6 7A A A A A  ниже кормы ЛА моделиро-

валась набором из 70 700  ячеек с изменяющейся в соответствии с 

движением ЛА координатой z . Для этой подобласти проводилось сгу-

щение сетки к каждой из границ. Область 
2 3 4 5 6A A A A A , первоначально 

заполненная атмосферной средой, моделировалась стационарной             

сеткой из 250 250  ячеек. Для этой подобласти сгущение сетки прово-

дилось только к границам 
1 2 6 5A A A A  и 

2 3A A . 

 

 
  

Рис. 7. Модель раскрытия ПК в пространственной постановке  

с учетом движения ЛА: 

1 — стенка ПК; 4,10 — начальное и текущее положения кормы ЛА; 

6 — экран; 9 — стенка ЛА; 2,7 — передние фронты возмущений; 

3,8 — подвижная и неподвижная ячейки расчетной сетки; 

 5 — граница нерегулярного контакта ячеек сетки 

 

На границах расчетной области ставились следующие краевые 

условия. На участках 
0 7A A  (ось симметрии), 

0 1A A  (дно ПК), 
1 2A A                      

z
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(боковая стенка ПК), 
2 3A A  (непроницаемый экран), 

6 5A A  (боковая 

стенка ЛА) ставились обычные условия непротекания, тогда как на 

границе 
7 6A A  условие непротекания учитывало еще и подвижность 

границы [23]. На удаленных границах 
3 4A A  и 

5 4A A  экстраполирова-

лись значения параметров из соседних ячеек. Вдоль линии 
2 6A A  гра-

ница контакта между ячейками двух областей изменялась от шага к 
шагу соответственно изменениям координат ячеек подвижной части 
сетки. При определении потоков в каждую из таких ячеек учитывались 
все возможные ее контакты с ячейками из другой подобласти, а также 

с участками твердых границ 
1 2A A , 

6 5A A . 

В осесимметричном расчете определялись те же параметры, что и 
в одномерном расчете, за исключением того, что вектор скорости 

среды в ячейках описывался уже двумя компонентами 
rv  и 

zv . 

Результаты численного моделирования в одномерной и осесим-
метричной постановках представлены на рис. 8 в виде графиков зави-
симости удельной силы от времени. В одномерном случае удельная 

сила на дно ПК совпадает с зависимостью   атмz L
p t p


 , а в осесим-

метричной постановке — с дискретным аналогом интеграла 

  2

0

2
, .

R

атмz L
p r t p r dr

R 
 
    

 
Удельная сила на дно ПК 

 
 

Время 

 
Рис. 8. Зависимость удельной силы на дно ПК от относительного времени t : 

1 — решение в одномерной постановке; 
 2 — решение в пространственной постановке 
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Согласно полученным результатам, основной эффект от учета 

пространственного характера задачи проявляется в более медленном 

темпе спада силового воздействия на дно ПК, связанного с влиянием 

на процесс истечения газов из ПК кормового среза ЛА. 

Выводы. Представлены результаты численного моделирования в 
пространственной постановке двух нестационарных газодинамиче-
ских процессов. Расчеты проводились классическим методом                                
С.К. Годунова. 

В первой из задач рассматривалось перетекание газовой среды из 
одного объема с более высоким начальным давлением в другой объем. 
Представлено сравнение результатов пространственного расчета и 
расчета, выполненного обычно используемым инженерным методом, 
основанным на квазистационарном приближении. Полученные                       
результаты позволяют глубже оценивать точность приближенного 
подхода при решении практических задач. В частности, можно                      
сделать вывод, что для более точного воспроизведения физического 
процесса в обоих подходах следует учитывать теплообмен между                      
газом и стенками заключающих его объемов. 

Во второй задаче численно моделировался процесс раскрытия ПК 
при выходе из него ЛА. Выполнено сравнение решения, полученного 
в упрощенной одномерной постановке, и решения, полученного в                       
осесимметричной постановке и учитывающего влияние кормы ЛА на 
процесс истечения газовой среды из ПК в окружающее пространство. 
В обоих постановках обнаруживается эффект разрежения в донной ча-
сти ПК при близких значениях отрицательной силовой нагрузки.                       
Однако прогнозируемый в более полной постановке задачи темп спада 
силового воздействия на дно ПК оказывается заметно более                                    
медленным. 
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Some examples of numerical simulation of unsteady  

gas dynamical phenomena for the purpose  

of lifting vehicles design 
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The problem of unsteady gas flow between two volumes has been considered for the spatial 

and for the engineering formulations. The comparison of the two solutions has been pre-

sented which allows to assess the accuracy of the engineering approach usually utilized in 

practical calculations. The problem has been also considered of the determination of the 

unsteady force acting on the bottom of the canister at the stage of the lifting vehicle exit in 

the process of the gas dynamical ejection. The numerical simulation of the spatial problems 

has been completed in accordance with the classical Godunov’s method including the mov-

ing grid technique. 
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