doi: 10.18698/2309-3684-2020-3-99116
According to the current scheme with the equivalent half-bottom surface, the subsonic streamlining of the axisymmetric bodies with the separation line located in the bottom cut area is examined. Recommendations have been made to improve the calculation method in the case of non-zero angles of attack. The estimated ratios of the technique are adapted to use the method of discrete vortexes. Detailed data on the distribution of speed and pressure on the surface of the cylindrical body with a bottom cut and the head part of the liveable shape at non-zero angles of attack are presented.
[1] Fletcher K. Vychislitel'nye metody v dinamike zhidkostej. T. 2. Metody rascheta razlichnyh techenij [Computational methods in fluid dynamics. Vol. 2. Methods for calculating different flows]. Moscow, Mir Publ., 1991, 552 p.
[2] Kalugin V.T., Sobolev V.Yu. Mathematical simulation of processes of subsonic turbulent flow around stabilizing devices of flying vehicles under condition of flow separation. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2005, no. 2, pp. 20–30.
[3] Efremova M.Yu., Kryukov P.V., Galaktionov A.Yu. Chislennyj raschet aerodinamicheskih harakteristik sfericheskogo tela s protokom pri dozvukovyh skorostyah [Numerical calculation of the aerodynamic characteristics of a spherical body with a flow at subsonic speeds].Vestnik Moskovskogo gos-udarstvennogo universiteta lesa – Lesnoj vestnik [Bulletin of the Moscow state forest University – Forest Bulletin], 2015, no. 1, pp. 129–135.
[4] Golovkin M.A., Golovkin V.A., Kalyavkin V.M. Voprosy vihrevoj gidromehaniki [Questions of vortex hydromechanics]. Moscow, Fizmatlit Publ., 2009, 264 p.
[5] Saffman P.G. Vortex Dynamics. Cambridge, Cambridge University Press, 1992, 311 p.
[6] Andronov P.R., Guvernyuk S.V., Dynnikova G.Ya. Vikhrevye metody rascheta nestatsionarnykh gidrodinamicheskikh nagruzok [Vortex methods of calculation of nonstationary hydrodynamic loads]. Moscow, Institute of Mechanics Lomonosov MSU Publ., 2006, 184 p.
[7] Lewis R.I. Vortex element methods for fluid dynamic analysis of engineering systems. Cambridge, Cambridge University Press, 2005, 592 p.
[8] Kuzmina K.S., Marchevskii I.K., Moreva V.S. Vortex sheet intensity computation in incompressible flow simulation around an airfoil by using vortex methods. Mathematical Models and Computer Simulations, 2018, vol. 10, iss. 3, pp. 276–287.
[9] Plyusnin A.V. Boundary-element-method modelling of inside and outside non-stationary interaction of aircraft body and liquid. Маthematical Modeling and Computational Methods, 2014, no. 2, pp. 77–100.
[10] Kocur O.S., Shcheglov G.A. Implementation of the particle strength exchange method for fragmentons to account for viscosity in vortex element method. Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2018, no. 3, pp. 48–67.
[11] Dergachev S.A., Scheglov G.A. Vortex element method simulation of flow around bodies using closed vortex loops. Civil Aviation High Technologies, 2016, no. 223, pp. 19–27.
[12] Belotserkovskiy S.M., Nisht M.I., Kotovskiy V.N., Fedorov R.M. Trekhmernoe otryvnoe obtekanie tel proizvolnoy formy [Three-dimensional detached flow of the bodies of arbitrary form]. Moscow, TsAGI (Central Aerohydrodynamic Institute) Publ., 2000, 265 p.
[13] Gogish L.V., Stepanov G.Yu. Otryvnye i kavitatsionnye techeniya. Osnovnye svoiystva i raschet modeli [Detached and cavitational flows. Basic properties and model calculation]. Moscow, Nauka Publ., 1990, 384 p.
[14] Timofeev V.N. Mathematical modeling of separated subsonic flowaround axially symmetrical bodies with base pressure. Engineering Journal: Science and Innovation, 2014, no. 10. Available at: http://engjournal.ru/ catalog/mathmodel/aero/1246.html (accessed October 17, 2017).
[15] Timofeev V.N. Construction of a semi-infinite equivalent body in mathematical modeling of subsonic separated axisymmetric flow. Маthematical Modeling and Computational Methods, 2016, no. 4, pp. 67–83.
[16] Timofeev V.N. Mathematical simulation of the subsonic flow around the lengthening bodies with the flow separation in the region of ground shear with the use of an equivalent body. Journal of Physics: Conference Series, 2018, vol. 1141, art. no. 012095.
[17] Lifanov I.K. Metod singulyarnykh integralnykh uravneniy i chislennyy eksperiment (v matematicheskoi fizike, aerodinamike, teorii uprugosti i difraktsii voln) [The method of singular integral equations and numerical experiment (in mathematical physics, aerodynamics, theory of elasticity and diffraction of waves)]. Moscow, LLP Yanus Publ., 1995, 520 p.
[18] Aubakirov T.O., Belotserkovskiy S.M., Zhelannikov A.I., Nisht M.I. Nelineinaya teoriya kryla i ee prilozheniya [Nonlinear wing theory and its applications]. Almaty, Gylym Publ., 1997, 448 p.
[19] Timofeev V.N. Simulation of the subsonic detachable body with a bottom cut on the current pattern with an equivalent half-infinite surface at small angles of attack. Маthematical Modeling and Computational Methods, 2019, no. 4, pp. 31–49.
[20] Timofeev V.N. Special features of vortex diagram in simulation of subsonic detached flow around the semi-infinite equivalent body. Mathematical Modeling and Computational Methods, 2017, no. 4, pp. 73–91.
[21] Dimitrienko Yu.I. Mekhanika sploshnoj sredy. T. 1. Tenzornyj analiz [Continuum Mechanics. Vol. 1. Tensor analysis]. Moscow, BMSTU Publ., 2011, 367 p.
[22] Lyubimov A.N., Tyumnev N.M., Khud G.I. Metody issledovaniya techenij gaza i opredeleniya aerodinamicheskih harakteristik osesimmetrichnyh tel [Methods for studying gas flows and determining the aerodynamic characteristics of axisymmetric bodies]. Moscow, Nauka Publ., 1995, 397 p.
Тимофеев В.Н. Моделирование дозвукового отрывного обтекания осесимметричных тел с донным срезом при ненулевых углах атаки. Математическое моделирование и численные методы, 2020, № 3, с. 99–116.
Количество скачиваний: 318