629.762 Optimization of the method of burning surface area calculation for solid propellant charges of comparatively simple spatial forms

Plyusnin A. V. (Bauman Moscow State Technical University)

CHARGE OF SOLID PROPELLANT, BURNING SURFACE, ROCKET MOTOR


doi: 10.18698/2309-3684-2020-3-6884


It may be expedient to integrate the preliminary design of solid propellant motors (SPM), especially the motors aimed for launching, into the overall design, when lifting vehicles are created with SPM included in their structure. This implies that the internal ballistic calculations have to be provided by utilizing the engineering mathematical models, the only complex point of which is the evaluation of the burning surface of the charge under consideration. A method for the computation of this relation is presented in this work, which optimizes one of the previously proposed methods as in efficiency of calculations so in the precision of the results.


[1] Alemasov V.E., Dregalin A.F., Tishin A.P. Teoriya raketnyh dvigatelej [Theory of rocket engines]. Moscow, Mashinostroenie Publ., 1989, 464 p.
[2] Aliev A.V. et al. Internal ballistics of solid-propellant pocket engines. Moscow, Mashinostroenie Publ., 2007, 500 p.
[3] Pirumov U.G., Roslyakov G.S. Gazovaya dinamika sopel [Gas dynamics of nozzles]. Moscow, Nauka Publ., 1990, 368 p.
[4] Sokolovsky M. I., Petrenko V. I., Zykov G. A., etc. Upravlyaemye energeticheskie ustanovki na tverdom raketnom toplive [Controlled power plants based on solid rocket fuel]. Moscow, Mashinostroenie Publ., 2003, 464 p.
[5] Sorkin R. E. Teoriya vnutrikamernyh processov v raketnyh sistemah na tverdom toplive: vnutrennyaya ballistika [Theory of in-chamber processes in solid-fuel rocket systems: internal ballistics]. Moscow, Nauka Publ., 1983, 288 p.
[6] Barrère M., Jaumotte A., De Veubeke B.F., Vandenkerckhove J. Rocket Propulsion. Amsterdam — London — New York — Princeton, Elsevier Publishing Company, 1960, 799 p.
[7] Dimitrienko Yu. I., Kulagin Yu. A., Yarmola A. P. Modelirovanie gazodinamicheskih processov v kamerah sgoraniya dvigatelej s anizotropnymi tverdymi toplivami [Modeling of gas-dynamic processes in combustion chambers of engines with anisotropic solid fuels]. Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2011, no. S3, pp. 100–109.
[8] Dimitrienko Yu.I., Dimitrienko I.D. Termomekhanicheskaya model' erozionnogo goreniya energeticheskih materialov [Thermomechanical model of erosive combustion of energy materials]. Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2012, no. S3, pp. 96–113.
[9] King M.K. Erosive burning of composite solid propellants: experimental and modeling studies. Journal of Spacecraft and Rockets, 1979, vol. 16, no. 3, pp. 154–162.
[10] Jackson T.L., Buckmaster J. Heterogeneous propellant combustion. AIAA Journal, 2002, vol. 40, no. 6, pp. 1122–1130.
[11] Degtyar V. G., Pegov V.I. Gidrodinamika podvodnogo starta raket [Hydrodynamics of underwater rocket launch]. Moscow, Mashinostroenie Publ., 2009, 448 p.
[12] Efremov G.A., Minasbekov D.A., Modestov V.A., Strakhov A.N., Bondarenko L.A., Yakimov Yu.L., Plyusnin A.V., Krupchatnikov I.V., Sokolov P.M., Govorov V.V. Sposob imitatsii usloviy starta rakety iz podvodnoy lodkii sistema dlya ego osushchetvleniya [Way of simulating the conditions of rocket launching from the submarine and the system for its implementation]. Patent RF no. 2082936, 1997.
[13] Kruglov Yu.A., Zyuzlikov V.P., Sinilshchikov B.E., Sinilshchikov V.B. Sistemy katapul'tirovaniya raket [Rocket ejection systems]. Saint Petersburg, BSTU Publ., 2010, 184 p.
[14] Plyusnin A.V. Simulating mass-consuming characteristics of power devices providing gas-dynamic ejection of the flying vehicle with setup parameters. Маthematical Modeling and Computational Methods, 2017, no. 1, pp. 55–77.
[15] Plyusnin A.V. Mathematical methods for optimal selection of linear increasing over time mass-flow characteristics of energy devices ensuring aircraft gas-dynamic ejection with specified parameters. Маthematical Modeling and Computational Methods, 2019, no. 3, pp. 57–85.
[16] Papa Rao B.V., Subhananda Rao A. Multi perforated grain design for hot gas generator. 51 AGM & Seminar on Advances in Aerospace Technologies (SAAT2000). Abstracts. Hyderabad, Aeronautical Society of India, 2000, p. 17.
[17] Aleksandrov A.A., Dimitrienko Y.I. Mathematical and computer modeling — the basis of modern engineering sciences. Маthematical Modeling and Computational Methods, 2014, no. 1, pp. 3–4.
[18] Zarubin V.S., Kuvyrkin G.N. Special features of mathematical modeling of technical instruments. Маthematical Modeling and Computational Methods, 2014, no. 1, pp. 5–17.
[19] Zharkov M.I., Kuzmin E.V., Plyusnin A.V., Shube I.G. Metody matemati-cheskogo proektirovaniya energoustrojstva, osushchestvlyayushchego gazodinamicheskij vybros letatel'nogo apparata iz puskovogo kontejnera [Methods of mathematical design of an energy device that performs a gasdynamic ejection of an aircraft from a launch container]. Sbornik trudov konferencii «XLIV Akademicheskie chteniya po kosmonavtike, posvyashchennye pamyati akademika S. P. Korolyova i drugih vydayushchihsya otechestvennyh uchenyh — pionerov osvoeniya kosmicheskogo prostranstva» [Proceedings of the conference «XLIV Academic space conference, dedicated to the memory of academician S.P. Korolev and other outstanding national scientists — pioneers of space exploration»], 2020, vol. 2, pp. 621–623.
[20] Osher S., Sethian J.A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics, 1988, vol. 79, no. 1, pp. 12–49.
[21] Bitkin S.A., Kuznetsov A.B. Raschet massovyh harakteristik i poverhnosti goreniya zaryada RDTT v srede 3D-modelirovaniya Creo Parametric [Calculation of mass characteristics and the gorenje surface of the charge of the RTD in the 3D modeling environment Creo Parametric]. Chelyabinsk, Nauka YUrGU: materialy 67-j nauchnoj konferencii [Nauka YURGU: proceedings of the 67th Scientific Conference], 2016, pp. 1664–1672.
[22] Plyusnin A.V. Sposob rascheta ploshchadi poverhnosti goreniya prostran-stvennogo tverdotoplivnogo zaryada [Method for calculating the gorenje surface area of a spatial solid fuel charge]. Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2012, no. S3, pp. 86–95.
[23] Plyusnin A.V. Primery ispol'zovaniya chislennyh metodov pri reshenii zadach podvodnogo gazodinamicheskogo vybrosa [Examples of the use of numerical methods in solving problems of underwater gas-dynamic emission]. Sbornik trudov konferencii «XLIV Akademicheskie chteniya po kosmonavtike, posvyashchennye pamyati akademika S. P. Korolyova i drugih vydayushchihsya otechestvennyh uchenyh — pionerov osvoeniya kosmicheskogo prostranstva» [Proceedings of the conference «XLIV Academic space conference, dedicated to the memory of academician S. P. Korolev and other outstanding national scientists — pioneers of space exploration»], 2020, vol. 2, pp. 233–247.
[24] Plyusnin A.V., Sabirov Yu.R., Bondarenko L.A., Sokolov P.M. Razrabotka novyh raschetno-teoreticheskih i eksperimental'nyh podhodov k resheniyu sovremennyh zadach gazodinamiki podvodnogo starta [Development of new computational-theoretical and experimental approaches to solving modern problems of underwater launch gas dynamics]. Sbornik trudov konferencii «XXXVIII Akademicheskie chteniya po kosmonavtike, posvyashchennye pamyati akademika S. P. Korolyova i drugih vydayushchihsya otechestvennyh uchenyh — pionerov osvoeniya kosmicheskogo prostranstva» [Proceedings of the conference «XXXVIII Academic space conference, dedicated to the memory of academician S. P. Korolev and other outstanding national scientists — pioneers of space exploration»], 2014, vol. 1, pp. 75–83.


Плюснин А.В. Оптимизация метода расчета площади поверхности горения для твердотопливных зарядов сравнительно несложных пространственных форм. Математическое моделирование и численные методы, 2020, № 3, с. 68–84.