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При создании летательных аппаратов, конструкция которых содержит ракетные 

двигатели на твердом топливе (РДТТ), бывает целесообразным, особенно в отно-

шении стартовых энергоустройств, интегрировать предварительный этап их  

проектирования в общий процесс проектирования. Это подразумевает проведение 

расчетов внутренней баллистики РДТТ по инженерным математическим моделям, 

единственным проблемным местом которых является определение площади по-

верхности горения заряда. В данной работе представлен метод расчета указанной 

зависимости, в котором один из ранее предложенных методов оптимизируется и 

по эффективности вычислительного процесса, и по точности результатов.  
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Введение. Твердотопливные ракетные двигатели (РДТТ) явля-

ются неотъемлемой составной частью широкого класса современных 
летательных аппаратов (ЛА), создаваемых в ракетно-космической от-
расли. По их назначению РДТТ можно подразделить условно на три 
основных типа: стартовые, маршевые и вспомогательные. 

Главной задачей маршевых РДТТ является обеспечение                        
собственно полета ЛА за счет тяги, создаваемой этими двигателями. 
При проектировании таких РДТТ особое внимание уделяется вопро-
сам совершенства тяги, и это есть магистральное направление наибо-
лее глубоких и интенсивных исследований расчетно-теоретического и 
экспериментального характера [1–10]. 

Для многих РДТТ вспомогательного назначения основным требо-
ванием является генерация импульса давления. Для этих энерго-
устройств характерно очень короткое время работы и чрезвычайно  
высокое рабочее давление в камере. Математическое моделирование 
работы этих устройств критически зависит от адекватного описания 
теплообменных, термохимических процессов, а также термодинами-
ческих свойств продуктов сгорания, составляющих смесь реальных  
газов и конденсированной фазы. 

Основная задача стартовых РДТТ заключается в осуществлении 
выброса ЛА из пусковой установки. Требования, предъявляемые при 
этом к РДТТ, непосредственно связаны с тем способом, по которому 
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этот выброс осуществляется [11–13]. Наибольшей эффективностью 
обладает газодинамическая схема выброса, использующая миномет-
ный или поршневой эффект [12]. В этом случае, как нетрудно показать 
[14], сила от давления продуктов сгорания, аккумулируемых в замкну-
том рабочем объеме пускового контейнера, примерно на порядок пре-
восходит тягу, развиваемую тем же самым энергоустройством. Как 
следствие, требования, предъявляемые к РДТТ при такой схеме                   
выброса ЛА, формулируются в отношении к массовому расходу про-
дуктов сгорания, а не к тяге двигателя [14, 15]. 

Как правило, массорасходная характеристика энергоустройств, 
применяемых для газодинамического выброса ЛА по минометной 
схеме, должна иметь прогрессивный характер. При этом, как показано 
в работе [14], теоретическая расходная характеристика, для которой 
движение ЛА в пусковом контейнере было бы оптимальным, не может 
быть реализована ни в одном обычном двигателе. Для того, чтобы         
выбрать оптимальные расходные характеристики из числа реализуе-
мых, имеется два способа. Можно искать оптимальное решение задачи 
газодинамического выброса ЛА, решая одновременно задачу внутрен-
ней баллистики РДТТ, в которой каким-либо образом осуществляется 
перебор всевозможных конфигураций зарядов твердого топлива. 
Например, можно искать оптимальные расходные характеристики для 
класса цилиндрических многоканальных зарядов [16]. 

Более наглядный подход состоит в том, чтобы, решая задачу газо-
динамического выброса, находить оптимальные теоретические массо-
расходные характеристики простого вида [14, 15] и уже затем выби-
рать конфигурацию заряда, которая позволила бы удовлетворительно 
эти зависимости воспроизвести. Причем в понятие воспроизведения 
теоретических характеристик строгий математический смысл не вкла-
дывается, результат оценивается по качеству решения конечной           
задачи газодинамического выброса ЛА. 

Как нетрудно видеть, оба подхода предполагают тесную связь              
задачи проектирования газодинамического выброса ЛА и задачи         
предварительного проектирования, соответствующего стартового 
РДТТ, что вполне соответствует современным тенденциям и страте-
гиям  математизации и компьютеризации инженерных расчетов [17, 18]. 
Ввиду значительно большей простоты по сравнению с маршевыми 
РДТТ, теоретический расчет внутренней баллистики стартовых РДТТ 
может быть проведен по инженерным моделям внутрибаллистического 
расчета [2, 5, 19, 20]. Наиболее трудной частью задачи является подхо-
дящий выбор геометрии заряда, а затем расчет площади поверхности 

горения 
bS  в зависимости от толщины выгоревшего свода топлива

be . 

Задача выбора геометрии заряда, за исключением простейших 

случаев [15], сложна и трудно поддается математической                             

формализации. Наоборот, расчет площади поверхности горения 
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 b b bS S e  может быть выполнен многими методами [1, 2, 5–8, 16,              

20–22]. В данной работе предлагается усовершенствование метода 

расчета, представленного в работе [22] и основанного на вычислении 

зависимости текущего объема невыгоревшего топлива 
s  от толщины 

выгоревшего свода 
be  [5]. Текущую величину площадь поверхности 

горения можно затем найти посредством численного                               

дифференцирования: 

   .s
b b

b

d
S e

de


   (1) 

Метод работы [22] предполагает формирование выборки псевдо-

случайных чисел объемом не менее 610 — 710  элементов, но даже и в 

этом случае, как показывает пример расчета, качество зависимости 

 b bS e  оставляет желать лучшего. Новый вариант метода [22]                   

построен целиком на детерминистском принципе. При этом требова-

ния к резервируемой памяти обусловлены исключительно объемом со-

храняемой дискретной информации относительно зависимости 

 s be . Кроме того, из представленных примеров вычислений будет 

видно, что качество численного дифференцирования зависимости 

 s be  оказывается достаточно высоким и уже не требует специаль-

ных ухищрений. 

Описание усовершенствованного метода. Пусть нам задана не-

которая конкретная конфигурация заряда из твердого топлива, для      

которой требуется вычислить зависимость  b b bS S e . Как и в методе–

прототипе, область  g , соответствующую геометрическому объему 

заряда, будем рассматривать в декартовой системе координат Oxyz   и 

поместим ее внутрь некоторой области   соответствующего трехмер-

ного пространства. Эту область   разобьем на достаточно большое 

число ячеек. При этом как область  , так и структура ее разбиения 

должны описываться простым способом, поскольку память под эти 

данные резервировать не предполагается. Самым простым и универ-

сальным способом является задание области   как некоторого парал-

лелепипеда с гранями, параллельными координатным плоскостям, и 

ее последующее равномерное разбиение на однотипные ячейки.                 

В таком случае достаточно сохранять в памяти лишь координаты од-

ной из вершин параллелепипеда, а также шаг и число разбиений вдоль 

каждого из трех ребер, выходящих из этой вершины. Именно этим 

способом будем пользоваться в дальнейшем. 

На следующем этапе оцениваем сверху величину максимального 
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свода заряда maxbe  , т.е. то минимальное значение свода 
be  , при кото-

ром имеет место полное выгорание заряда: 

  max 0.s be    

Чтобы получить оценку сверху для величины maxbe , соответствующее 

значение будем обозначать как maxbe , достаточно предварительно              

выполнить вычисления  s be  на грубой сетке. 

Зададим далее приращение свода 
be , определяющие совокуп-

ность расчетных точек b j be j e , где индекс j  принимает значения от 

0  до 
max

1
b

b

b

e
N

e

 
  
 

, (символ  ...  означает здесь целую часть числа). 

В оперативной памяти достаточно резервировать место лишь под од-

номерный массив, в котором по завершении расчета будут содер-

жаться данные, позволяющие вычислять значения  .s j s b je    

В процессе самого расчета производится всего лишь однократный 

обход ячеек, принадлежащих области  , описываемый, например, 

циклом по целочисленному индексу k . Пусть точка с координатами 

 , ,k k kx y z  представляет собой центр текущей ячейки (ее координаты 

очевидным образом вычисляются по параметрам разбиения области 

 ). Для данной точки решаем сначала задачу «принадлежности», т.е. 

определяем, принадлежит ли рассматриваемая точка области g , т.е. 

начальному объему заряда. Поскольку область g  заранее определена 

некоторой системой ограничений в виде неравенств, решение задачи 

«принадлежности» сводится лишь к их проверке, что, очевидно, ника-

ких затруднений не вызовет. Если выясняется, что точка  , ,k k kx y z     

заряду не принадлежит, тогда индекс k  инкрементируется на 1 , и              

вычислительный процесс продолжается для следующей ячейки. 

В том случае, когда включение  , ,k k k gx y z    имеет место, для 

данной точки решается задача «удаленности». Это означает вычисле-

ние кратчайшего расстояния  
kd   от точки  , ,k k kx y z  до начальной по-

верхности горения, т.е. до всей начальной поверхности заряда, не за-
щищенной бронировкой. В отличие от задачи «принадлежности», для 
решения задачи «удаленности» в общем случае нет простого эффек-
тивного способа решения. Тем не менее, заряды стартовых РДТТ 
обычно имеют сравнительно несложные пространственные конфигу-
рации, для которых решение задачи «удаленности» является вполне 
тривиальным. Кроме того, во многих более сложных случаях вместо 
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точного решения этой задачи вполне можно ограничиться корректным 
приближенным вычислением кратчайшего расстояния. 

Определив значение 
kd , будем инкрементировать на величину 

объема ячейки 
k   те элементы массива sj  , для которых выполнено 

неравенство b j ke d . Поскольку мы условились разбивать область   

на ячейки с одинаковым объемом 
k    , элементы sj  достаточно 

инкрементировать на 1 , а кратный множитель   учитывать только 

на конечной стадии вычислений, когда выполняется численное              

дифференцирование по формуле (1). 

Далее процесс продолжается до полного перебора ячеек. По его 

завершению пары значений 
bj e  и sj   будут приближенно описы-

вать искомую зависимость  s s be  . Для получения соответству-

ющей дискретной зависимости  ,b b jj e S , аппроксимирующей иско-

мую зависимость  b b bS S e , численное дифференцирование можно 

выполнять, например, по формулам 

 
 

1 0

1 1

, 0

0,5 , 0,

s s

bj

sj sjb

j
S

je



  

   
 

  

  

в которых для первого значения, соответствующего индексу 0j , ис-

пользуется односторонняя разность, а для остальных значений 

0 bj N   используются центральные разности.  

Некоторые примеры. В качестве первого примера рассмотрим 

расчет площади поверхности горения заряда, имеющего форму тора, 

вся поверхность которого доступна для горения (рис. 1). Аналитиче-

ское решение задачи описывается формулой 

     2

1 2 2 1 2 .b b bS e R R R R e      (2) 

 
Рис.1. Геометрия тороидального заряда ( 1 0,5R  , 2 0,7R  ) 

z

xO

1R

2R
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Чтобы иметь возможность выполнить данный расчет описанным 

выше численным методом, мы должны для каждой точки области              

  решить задачи «принадлежности» и «удаленности». Не останавли-

ваясь на конкретном выборе области  , зафиксируем произвольную 

точку пространства  , ,k k kM x y z  и проведем через нее и через ось 

симметрии тора Oz  меридиональное сечение. Точки этого сечения бу-

дем рассматривать в координатах 2 2r x y   и z . Тогда соответству-

ющее сечение тора будет представлять собой круг радиуса 

 2 10,5c R R   с центром в точке  1 20,5r R R  , 0z . Ясно, что 

точка M  будет принадлежать этому кругу, а, следовательно, тору           

тогда и только тогда, когда для ее координат 2 2

k k kr x y  , 
kz                         

выполняется неравенство 

   
2 2 2

1 20,5 .k kr R R z c      

Если это неравенство выполнено, тогда кратчайшее расстояние от 

точки M  до поверхности горения, т.е. кратчайшее расстояние от 

точки M  до поверхности тора будет вычисляться по формуле 

   
2 2

1 20,5 .k k kd c r R R z       

На рис. 2 представлены результаты вычислений, которые, как 

можно судить, практически совпадают с аналитическим решением (2). 

 

 

 
 

 
 

Рис. 2. Площадь поверхности горения тороидального заряда 

1 — численное решение, 2 —  аналитическое решение 
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В качестве второго примера рассмотрим плоский заряд единичной 

толщины в направлении оси Oz , заполняющий область в форме                 

прямого угла (рис. 3). Горение заряда может происходить только с             

левого края. Легко видеть, что принадлежность точки  ,k kM x y  объ-

ему заряда эквивалентна выполнению хотя бы одного из условий               

 20;kx a ,  1 2;ky a a  или  1 2;kx a a ,  20;ky a . 

 

 
 

Рис. 3. Геометрия плоского заряда угловой формы ( 1 0,5a  , 2 0,7a   ) 

1 — кратчайший путь MAC , 2,3 — пути MBD  и MBE   

 

В данном примере не все точки заряда находятся в «прямой види-

мости» относительно начальной поверхности горения. Однако нахож-

дение расстояния от точки M  до начальной поверхности горения и в 

этом случае не представляет труда: 

 
   

1

2 2

1 1 1 1

,

, .

k k

k

k k k

x y a
d

a x a y a y a




    

  

Учитывая закономерности поведения фронта горения при огибании 

угла [5], несложно получить аналитическое выражение для величины 

 b bS e . Опуская детали вывода, приведем окончательный результат: 
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В этой формуле мы воспользовались обозначениями: 
2 1 0,2a a a   , 

1b be e a   , 2 2

max 1be a a   . И в данном примере численное реше-

ние, если не брать во внимание небольшую «зашумленность», которая 

обязана намеренному выбору сравнительно грубой сетки, практически 

совпадает с аналитическим решением (рис. 4). 

 

 

 
 

 
 

Рис. 4. Площадь поверхности горения плоского заряда угловой формы 

1 — численное решение, 2 —  аналитическое решение 

 

В следующем примере рассмотрим моноблочный заряд длины 

1L  в направлении оси Oz , представляющий собой цилиндрическое 

кольцо с единственным внутренним цилиндрическим каналом,                

причем только поверхность этого канала открыта для горения (рис. 5). 

Очевидно, что в данной задаче координата z  не является                                            

существенной. 

Как и в предыдущем примере, поверхность горения находится в 

прямой видимости не для всех точек заряда. Если между такой точкой 

M  и центром канала Q  мысленно натянуть нить MABCQ , то вдоль 

соответствующей кривой и будет реализовываться кратчайший путь 

MABC  от данной точки до начальной поверхности горения (рис. 5). 

Принадлежность точки  ,k kM x y  объему заряда, как всегда, 

легко устанавливается. Действительно, точка M  тогда и только тогда 

принадлежит объему заряда, когда одновременно выполняются нера-

венства 
1 2kR r R   и 

0kr r  , где 2 2

k k kr x y  ,  
2 2

k k kr x c y    . 
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Рис. 5. Геометрия моноблочного заряда в форме цилиндрического кольца 

с одним внутренним горящим каналом 

1 — кратчайший путь MABC , 
1 0,5R  , 

2 0,8R  , 0,53c , 
0 0,005r   

 

Пусть оба эти условия выполнены. Тогда, опираясь на несложные 

геометрические соображения, можно вывести следующие формулы, 

определяющие расстояние от точки  ,k kM x y  до начальной поверх-

ности горения, совпадающей в нашем случае с границей внутреннего 

канала. 

Вычисляем предварительно значения 
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Результаты вычислений, полученные описанным выше методом, пред-

ставлены на рис. 6 кривой 1. 

Если при определении расстояния от точек заряда до начальной 

поверхности горения игнорировать наличие внутренней границы, то 

тогда результат вычислений будет ошибочным (кривая 2 на рис. 6). 
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Именно такой результат и получится, если в рассматриваемом                

примере для расчета зависимости  b b bS S e  применить программу, 

обычно используемую для расчета площади поверхности горения           

моноблочных зарядов с внутренними цилиндрическими каналами [20, 

22]. Таким образом, присутствие «затенений» ограничивает примени-

мость указанной методики. 

 

 
 

 
 

Рис. 6. Площадь поверхности горения моноблочного заряда в форме  

цилиндрического кольца с внутренним горящим каналом 

1 — корректное решение, 2 — решение, не учитывающее эффект затенения 

 

Рассмотрим теперь заряд с забронированной наружной тороидаль-

ной поверхностью и четырьмя симметрично расположенными внут-

ренними каналами, открытыми для горения (рис. 7). Результаты вы-

числений показаны на рис. 8. В отношении задачи «удаленности» 

ограничимся замечанием, что здесь она решалась в предположении, 

что кратчайшее расстояние от точки заряда  , ,k k kM x y z  до ближай-

шего канала достигается вдоль пути, лежащего в плоскости 
kz z . 

В начальной стадии горения данного заряда площадь поверхности 

горения близка к суммарной площади горения четырех свободно             

разгорающихся каналов:  016b bS c r e   (линия 1 на рис. 8). При 

значении свода горения 
0be c r   каналы разгораются до границ соот-

ветствующих поперечных сечений заряда (линия 2 на рис. 8), что со-

провождается резким спадом в величине площади горения. Дальней-

шее горение заряда происходит при примерно постоянном значении                   

площади поверхности горения. Это значение хорошо согласуется с 

оценкой 28 0,251bS c  , соответствующей суммарной площади 
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плоских фронтов горения, распространяющихся вдоль тора в обе сто-

роны от каждого из четырех каналов. При достижении значения свода 

горения  1 1 0tg 4 tgbe R R r      , где 
1arccos R R  , передние 

фронты горения соседних каналов смыкаются (линия 3 на рис. 8),              

после чего происходит догорание изолированных участков заряда. 

 

 
Рис. 7. Геометрия тороидального заряда с внутренними каналами 

( 0,6R , 0,1c , 1 0,5R R c   , 0 0,01r  ) 

 

 
 

 
 

Рис. 8. Площадь поверхности горения тороидального заряда с внутренними                   

цилиндрическими каналами  

1 — суммарная площадь горения свободно разгорающихся каналов, 2 — разгорание каналов до 

границ поперечного сечения заряда, 3 — смыкание передних фронтов горения соседних каналов 
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Последний пример имеет своей целью сопоставление метода         
расчета, описанного в данной работе, и предшествующего ему метода 
работы [22] в плане точности вычислений. На рис. 9 представлены полу-
ченные в работах [20, 22] результаты расчетов площади поверхности           
горения для заряда цилиндро–конической формы с внутренними откры-
тыми для горения коническими каналами. Геометрия заряда приведена 
в работах [22, 24]. Как выявили расчеты, усовершенствованный метод 
обладает значительными преимуществами над своим предшественни-
ком не только в точности получаемых результатов, но и в существенно 
более высокой производительности вычислений. 

Вполне очевидно, что при наличии у зарядов плоскостей симметрии 
эффективность вычислительного процесса можно значительно повы-
сить, если проводить расчет для минимально необходимой части заряда. 

Во всех представленных примерах геометрические характеристики 
зарядов имеют абстрактный смысл, и их можно рассматривать либо как 
безразмерные величины, либо как величины, согласованные между со-
бой, в какой-либо конкретной системе единиц измерения длин. 

С практической точки зрения применимость предложенного метода, 
как и его прототипа [22], ограничивается допустимостью предположения 
о геометрическом характере горения заряда [5]. С математической точки 
зрения точность предложенного метода зависит, с одной стороны, от              
степени дискретизации области  , притом, что необходимый уровень 
дискретизации не является проблемным для современных компьютеров 
даже с весьма невысокими рабочими параметрами. Более существенно 
на точность, и главное, правильность вычислений влияет качество реше-
ния задачи «удаленности», т.е. определения расстояний от точек заряда 
до ближайших участков начальной поверхности горения заряда. 

 

 
 

Рис. 9. Сопоставление по точности двух методов расчета площади поверхности    

горения цилиндро–конического заряда [22] 

1 — метод данной работы, 2 — метод работы [22] 
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Выводы. Предложена оптимизация опубликованного в работе 

[22] метода, предназначенного для расчета площадей поверхности            

горения зарядов РДТТ. Работа метода проиллюстрирована на ряде 

примеров, демонстрирующих, в частности, его преимущества, как в 

точности, так и в производительности вычислений, над методом [22]. 

Основным условием практического применения предложенного 

метода является выполнимость предположения о геометрическом           

характере горения заряда из твердого топлива. С математической             

стороны, правильность результатов вычислений обусловлена, глав-

ным образом, корректным определением расстояний от точек заряда 

до ближайших к ним участков начальной поверхности горения. 
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It may be expedient to integrate the preliminary design of solid propellant motors (SPM), 
especially the motors aimed for launching, into the overall design, when lifting vehicles 
are created with SPM included in their structure. This implies that the internal ballistic 
calculations have to be provided by utilizing the engineering mathematical models, the 
only complex point of which is the evaluation of the burning surface of the charge under 
consideration. A method for the computation of this relation is presented in this work, 
which optimizes one of the previously proposed methods as in efficiency of calculations so 
in the precision of the results. 
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