621.833.51 «Смешанные» вероятностные модели боя при переменных эффективных скорострельностях боевых единиц сторон

Chuev V. U. (Bauman Moscow State Technical University), Dubogray I. V. (Bauman Moscow State Technical University)

CONTINUOUS MARKOV PROCESS, "MIXED" PROBABILISTIC MODEL OF BILATERAL COMBAT OPERATIONS, COMBAT UNIT, EFFECTIVE RATE OF FIRE, PARAMETER OF THE INITIAL RATIO OF FORCES


doi: 10.18698/2309-3684-2020-1-118128


On the basis of the theory of continuous Markov processes, "mixed" probabilistic models of bilateral fighting operations with exponential dependences of the effective rate of fire of the combat units of the parties on the time of battle have been developed. A numerical algorithm has been developed to calculate the main indicators of the battle of numerous groups.  It is made a comparison of the results of battle simulation using a "mixed" deterministic model with exponential dependences of effective rates of fire on the time of battle, as well as with "mixed" probabilistic models with constant effective rates of fire. The scope of these types of models applicability is established.


[1] Alexandrov A.A., Dimitrienko Yu.I. Matematicheskoe modelirovanie i chislennye metody — Mathematical modeling and Computational Methods, 2014, no. 1, pp. 3–4.
[2] Zarubin V.S., Kuvyrkin G.N. Matematicheskoe modelirovanie i chislennye metody — Mathematical modeling and Computational Methods, 2014, no. 1, pp. 5–17.
[3] Venttsel E.S. Issledovanie operatsiy: zadachi, printsipy, metodologiya [Operations research: objectives, principles, methodology]. Moscow, URSS Publ., 2006, 432 p.
[4] Chuev Yu.V. Issledovanie operatsiy v voennom dele [Operations research in military arts]. Moscow, Voenizdat Publ., 1970, 270 p.
[5] Zaitsev D.V., Soskov D.Yu., Salov V.E. Vooruzhenie i ekonomika — Armament and Economics, 2016, no. 3, pp. 44–53.
[6] Jaiswal N.K. Military Operations Research: Quantitative Decision Making. Boston, Kluwer Academic Publishers, 1997, 388 p.
[7] Winston W.L. Operations Research: Applications and Algorithms. Belmont, Duxbury Press, 2001, 128 p.
[8] Tkachenko P.N. Matematicheskie modeli boevykh deistviy [Mathematical
models of combat operations]. Moscow, Sovetskoe radio, 1969, 240 p.
[9] Hillier F.S., Lieberman G.J. Introduction to Operations Research. New York, McGraw-Hill, 2005, 998 p.
[10] Alekseev O.G., Anisimov V.G., Anisimov E.G. Markovskie modeli boya [Markov’s battle models]. Moscow, the USSR Ministry of Defense Publ., 1985, 85 p.
[11] Venttsel E.S. Teoriya veroyatnostey [Probability theory]. Moscow, KnoRus Publ., 2016, 658 p.
[12] Chuev V.Yu., Dubogray I.V. Matematicheskoe modelirovanie i chislennye metody — Mathematical modeling and Computational Methods, 2016, no. 1, pp. 89–104.
[13] Dubogray I.V., Ryabtsev R.A., Chuev V.Yu. Izvestiya rossijskoj akademii raketnyh i artillerijskih nauk — Proceedings of the Russian academy of rocket and artillery sciences, 2018, no. 4 (109), pp. 68–75.
[14] Chuev V.Yu., Dubogray I.V., D'yakova L.N. Matematicheskoe modelirovanie i chislennye metody — Mathematical modeling and Computational Methods, 2017, no. 1, pp. 91–101.
[15] Dubogray I.V., Ryabtsev R.A., Chuev V.Yu. Izvestiya rossijskoj akademii raketnyh i artillerijskih nauk — Proceedings of the Russian academy of rocket and artillery sciences, 2019, no. 3 (112), pp. 71–76.


Чуев В.Ю., Дубограй И.В. «Смешанные» вероятностные модели боя при переменных эффективных скорострельностях боевых единиц сторон. Математическое моделирование и численные методы, 2020, № 1, с. 118-128.



Download article

Количество скачиваний: 270