539.3 On the method of gas turbine blade resource estimation at asymmetric cyclic loading

Zavoichinskaya E. B. (Lomonosov Moscow State University)

RESOURCE, STOCHASTIC PROCESSES, BLADE, FAILURE PROBABILITY, SCALE-STRUCTURAL FAILURE LEVELS, FATIGUE CURVES, MULTI-CYCLE FATIGUE, GIGACYCLE FATIGUE, MICROCRACKS, MACROCRACKS


doi: 10.18698/2309-3684-2020-1-4563


One of the modern problems of the resource and safety operation estimation in turbines and compressors of gas and steam turbine construction is to study the relations of the stochastic process of micro- and macrocracks nucleation and growing in blades at operational high cycle and gigacyclic fatigue. It has been experimentally found that micro- and macrocracks occur perpendicular to the axis of the blade in the stress concentration zone root section from the bending forms of forced resonance vibrations. In general, the axial stress may be presented as the sum of the constant component and the discrete spectrum with a set of amplitudes and phase deviations between the components. Here is consider the blade asymmetric single-frequency axial loading, for which a constant stress component is determined by the known relations for an elastic cantilever beam as the maximum value of the sum of tensile stress from centrifugal forces and bending from aerodynamic forces at the point of their application, and the stress amplitude is found on a well-known solution of the bending problem for various deflections of rigidly fixed to the disk elastic beam without ties. The proposed method of the blade resource estimating at the loading is based on the theory of material scale-structural fatigue, according to which the stochastic fatigue process is considered at six scale-structural levels corresponding to different stages of the material evolution by various physical mechanisms. A hierarchical system of constitutive relations for the failure probability at the micro-, meso- and macrolevels is defined. It is chosen the stress amplitude as a variable, and material functions are determined according to standard fatigue strength tests taking into account the results of brittle cracks evolution studу and depending on the asymmetry parameter. Here is carried out the identification of basic constants for high cycle and gigacycle fatigue of no endurance materials. For each level of defects, fatigue curves are determined. The results for VD17 aluminum alloy and ZhS6K nickel alloy blades are discussed. By comparing the theoretical calculation with experimental data, the method is confirmed.


[1] Shaniavsky A.A. Modelirovanie ustalostnyh razrushenij metallov. Sinergetika v aviacii. Synergetics in aviation [Modeling of fatigue failures of metals. Synergy in aviation. Syner-getics in aviation]. Ufa, Monografiya Publ., 2007, 500 p.
[2] Birger I.A., Shorr B.F. Dinamika aviacionnyh gazoturbinnyh dvigatelej [Dynamics of aircraft gas turbine engines]. Moscow, Mashinostroenie Publ., 1981, 232 p.
[3] Levin A.V. Rabochie lopatki i diski parovyh turbin [Blades and discs of steam turbines]. Moscow, Mashinostroenie Publ., 1989, 624 p.
[4] Kapralov V.M. The methodology of the experimental assessment of damage to multi-cycle fatigue accumulation, vibration strength and turbomachine blades endurance. Abstract. Doctor. Diss. St. Petersburg, 2010, 35 p.
[5] Noznitskii Yu.A., Baluev B.A., Fedina Yu.A. Vestnik UGATU — Bulletin of UGATU, 2015, vol. 19, no. 3 (69), pp. 3–14.
[6] Rybnikov A.I., Getsov L.B., Laskin A.S., Kovalev A.G., Dashunin N.V., Mozhayskaya N.V., Leontyev S.A. Vestnik dvigatelestroenia — Bulletin of engine building, 2008, no. 1, pp. 33–39.
[7] Shaniavsky A.A., Soldatenkov A.P. Fizicheskaya mezomekhanika — Physical Mesomechanics, 2019, no. 22 (1), pp. 44–53.
[8] Bathias C., Paris P. Gigacycle Fatigue in Mechanical Practice. New York, Marcel Dekker, 2005, 304 p.
[9] Burago N.G., Zhuravlev A.B., Nikitin I. S., Yakushev V. L. Matematicheskoe modelirovanie — Mathematical Models and Computer Simulations, 2016, vol. 28, no. 2, pp. 53–64.
[10] Bathias C., Paris P.C., Huang Z., Wagner D. Subsurface crack initiation and propagation mechanisms in gigacycle fatigue. Acta Materialia, 2010, vol. 58, pp. 6046–6054.
[11] Skubachevsky G. S. Aviacionnye gazoturbinnye dvigateli. Konstrukciya i raschet detalej [Aircraft gas turbine engines. Design and calculation of parts]. Moscow, Mashinostroenie Publ., 1969, 543 p.
[12] Zavoichinskaya E.B. Mekhanika tverdogo tela — Mechanics of Solids, 2012, no. 3, pp. 54–77.
[13] Zavoichinskaya E.B. Scale-structural fatigue and structural durability at proportional loading processes. Abstract. Doct. Diss., Moscow: “Genesis”, 2018, 46 pp.
[14] Zavoichinskaya E.B. Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika — Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2019, no. 2, pp. 29–34.
[15] Zavoichinskaya E.B. O stohasticheskoj teorii ustalostnogo masshtabnostrukturnogo razrusheniya metallov [On the stochastic theory of scale-structural metal fatigue]. Sbornik trudov konferencii «Sovremennye problemy matematiki i mekhaniki» [Proceedings of the conference "Modern problems of mathematics and mechanics."], 2019, pp. 694–697.
[16] Zavoichinskaya E.B. Prognozirovanie dolgovechnosti protyazhennyh konstrukcij pri ekspluatacionnom nagruzhenii. [Prediction of the long structure durability at operational loading]. Sbornik Trudov XII Vserossijskogo s'ezda po fundamental'nym problemam teoreticheskoj i prikladnoj mekhaniki. [Proceedings of the XII All-Russian Congress on Fundamental Problems of Theoretical and Applied Mechanics], 2019, vol. 3, pp. 607–609.
[17] Pelykh V.N., Pogrebnyak A.D., Rogulsky M.N., Romanova N.V. Problemy prochnosti — Strength of Materials, 2012, no. 5, pp. 85–97.
[18] Zhukov, N.D. Problemy prochnosti — Strength of Materials, 1974, no. 7, pp. 99–105.


Завойчинская Э.Б. О методе оценки ресурса лопаточного аппарата газотур- бинного двигателя при асимметричном циклическом нагружении. Математиче- ское моделирование и численные методы. 2020. № 1. с. 45–63



Download article

Количество скачиваний: 134