531.6.011.32:532.582.4 Simulation of the subsonic detachable body with a bottom cut on the current pattern with an equivalent half-infinite surface at small angles of attack

Timofeev V. N. (Bauman Moscow State Technical University)

MATHEMATICAL SIMULATION, SUBSONIC DETACHED FLOW, FLOW SCHEME, EQUIVALENT BODY, THE METHOD OF SINGLE VORTICES


doi: 10.18698/2309-3684-2019-4-3149


The subsonic flow of cylindrical bodies with a detachment located in the vicinity of the bottom cut is considered. The current scheme with an equivalent surface, which is accompanied by a half-infinite section is used. Recommendations have been given on the formation of a configuration of such an equivalent semi-infinite surface at non-zero attack angles. The laboriousness of the calculations is reduced by taking into account the specifics of the applied flow pattern and the use of P-shaped vortex threads in the method of discrete vortexes. The results of mathematical modeling of the flow of cylindrical bodies with a revitalized head and a bottom slice at small angles of attack are presented.


Fletcher K. Vychislitel'nye metody v dinamike zhidkostej. T. 2. Metody rascheta razlichnyh techenij [Computational methods in fluid dynamics. Vol.2. Methods for calculating different flows]. Moscow, Mir Publ., 1991, 552 p.
Patankar S.V. Chislennye metody resheniya zadach teploobmena i dinamiki [Numerical methods for solving heat transfer and dynamics problems]. Moscow, Energoatomizdat Publ., 1984, 152 p.
Kalugin V.T., Sobolev V.Yu. Vestnik MGTU im. N.E. Baumana. Seria Mashinostroenie – Herald of the Bauman Moscow State Technical University. Series: Mechanical Engineering, 2005, no.2, pp.20–30.
Efremova M.Yu., Kryukov P.V., Galaktionov A.Yu. Vestnik Moskovskogo gosudarstvennogo universiteta lesa – Lesnoj vestnik– Bulletin of the Moscow state forest University – Forest Bulletin, 2015, no.1, pp.129–135.
Val'ger S.A., Fedorov A.V., Fedorova N.N. Teplofizika i Aeromekhanika – Thermophysics and Aeromechanics, 2015, vol.22, no.1, pp.29–42.
Belotserkovskiy S.M., Nisht M.I., Kotovskiy V.N., Fedorov R.M. Trekhmernoe otryvnoe obtekanie tel proizvolnoy formy [Three-dimensional detached flow of the bodies of arbitrary form]. Moscow, TsAGI (Central Aerohydrodynamic Institute) Publ., 2000, 265 p.
Andronov P.R., Guvernyuk S.V., Dynnikova G.Ya. Vikhrevye metody rascheta nestatsionarnykh gidrodinamicheskikh nagruzok [Vortex methods of calculation of nonstationary hydrodynamic loads]. Moscow, Institute of Mechanics Lomonosov MSU Publ., 2006, 184 p.
Lewis R.I. Vortex element methods for fluid dynamic analysis of engineering systems. Cambridge University Press, 2005, 592 p.
Kuzmina K.S., Marchevskii I.K., Moreva V.S. Vortex sheet intensity computation in incompressible flow simulation around an airfoil by using vortex methods. Mathematical Models and Computer Simulations, 2018, vol.10, iss.3, pp.276–287.
Kuzmina K.S., Marchevsky I.K., Milani D., Ryatina E.P. Accuracy comparison of different approaches for vortex sheet discretization on the airfoil in vortex particles method. Proceedings of 5th International Conference on Particle-Based Methods, Particles,2017, pp.691–702.
Kocur O.S., Shcheglov G.A. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2018, no.3, pp.48–67.
Dergachev S.A., Scheglov G.A. Nauchnyy vestnik MGTU GA — Bulletin of Civil Aviation High Technologies, 2016, no.223, pp.19–27. DOI 10.26467/2079-0619-2016--223-19-27
Gogish L.V., Stepanov G.Yu. Otryvnye i kavitatsionnye techeniya. Osnovnye svoiystva i raschet modeli [Detached and cavitational flows. Basic properties and model calculation]. Moscow, Nauka Publ., 1990, 384 p.
Timofeev V.N. Inzhenernyi zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2014, no.10. Available at: http://engjournal.ru/catalog/mathmodel/aero/1246.html (accessed October 17, 2017).
Timofeev V.N. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2016, no.4 (12), pp.67–83.
Timofeev V.N. Mathematical simulation of the subsonic flow around the lengthening bodies with the flow separation in the region of ground shear with the use of an equivalent body. Journal of Physics: Conference Series, 2018, vol.1141, iss.1, art.no 012095.
Loytsyanskiy L.G. Mekhanika zhidkosti i gaza [Fluid mechanics]. Moscow, Drofa Publ., 2003, 840 p.
Lifanov I.K. Metod singulyarnykh integralnykh uravneniy i chislennyy eksperiment (v matematicheskoi fizike, aerodinamike, teorii uprugosti i difraktsii voln) [The method of singular integral equations and numerical experiment (in mathematical physics, aerodynamics, theory of elasticity and diffraction of waves)]. Moscow, LLP Yanus Publ., 1995, 520 p.
Aubakirov T.O., Belotserkovskiy S.M., Zhelannikov A.I., Nisht M.I. Nelineinaya teoriya kryla i ee prilozheniya [Nonlinear wing theory and its applications]. Almaty, Gylym Publ., 1997, 448 p.


Тимофеев В.Н. Моделирование дозвукового отрывного обтекания тел с донным срезом по схеме течения с эквивалентной полубесконечной поверхностью при малых углах атаки. Математическое моделирование и численные методы, 2019, № 4, с. 31–49.



Download article

Количество скачиваний: 478