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Рассматривается дозвуковое обтекание цилиндрических тел с отрывом, локализо-

ванном в окрестности донного среза. Используется схема течения с эквивалентной 

поверхностью, содержещей полубесконечный участок. Даны рекомендации по фор-

мированию конфигурации такой эквивалентной полубесконечной поверхности при 

ненулевых углах атаки. Трудоемкость вычислений снижена за счет учета специ-

фики применяемой схемы течения и использования П-образных вихревых нитей в 

методе дискретных вихрей. Представлены результаты математического модели-

рования обтекания цилиндрических тел с оживальной головной частью и донным 

срезом при малых углах атаки.  
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Введение. Применение математического моделирования дозвуко-

вого отрывного обтекания тел целесообразно при решении широкого 

круга практических задач в самых различных областях деятельности, 

что делает актуальным дальнейшее развитие и совершенствование 

подходов, методов и алгоритмов, используемых при изучении явлений 

отрыва потока.  Основанные на теории вязкой среды и дающие наибо-

лее полную информацию о параметрах потока в различных областях 

отрывного течения исследования, использующие методы решения 

уравнений Навье-Стокса [1–5], характеризуются достаточно слож-

ными алгоритмами и требуют существенных вычислительных ресур-

сов. Большие вычислительные возможности необходимы и для приме-

нения многих моделей, базирующихся на теории идеальной среды [6-

11]. Многообразие и громоздкость применяемых алгоритмов, а также 

большие трудности при согласования параметров в различных обла-

стях течения, являются характерными особенностями исследований 

[12, 13], в которых осуществляется полная реализация концепции 

вязко-невязкого взаимодействия [13]. 

Для сокращения затрат вычислительных мощностей была разра-

ботана методика [14] математического моделирования дозвукового 

отрывного обтекания тел с применением эквивалентной поверхности. 

Методологической основой построения расчетной схемы течения яв-

ляется концепция вязко-невязкого взаимодействия. В соответствии с 
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данной концепцией скорости и давления на внешней поверхности ис-

следуемого тела следует определять из расчетов невязкого обтекания 

некоторого тела вытеснения, которое и поверхность которого будем 

называть эквивалентными. Считается, что эквивалентная поверхность 

   состоит из носовой 
 1

  и хвостовой 
 2

   частей, каждая из которых 

может содержать несколько участков. Рассматривается дозвуковое об-

текание пространственных тел с отрывом потока в области непосред-

ственно примыкающей к линии донного среза. Поэтому предполага-

ется, что поверхность обтекаемого тела образует поверхность носовой 

части эквивалентного тела (рис. 1), а линия cL стыковки носовой и хво-

стовой частей эквивалентной поверхности, совпадает  с линией дон-

ного среза.  

 
Рис. 1. Схема течения с эквивалентной полубесконечной поверхностью:  

cL   — линия стыковки носовой  1
  и хвостовой  2

    частей эквивалентной 

 поверхности 

 

В данной методике реализуется подход, предусматривающий фор-

мирование хвостовой части эквивалентной поверхности с достаточно 

простой конфигурацией, что позволяет избежать необходимости про-

ведения сложных и затратных по ресурсам процедур согласования па-

раметров вязкого и невязкого обтекания. Для математического моде-

лирования предусмотрено использование схем течения с эквивалент-

ными поверхностями двух видов [15]: содержащей хвостовую часть 

конечной длины или с участком, уходящим на бесконечность вниз по 

потоку от линии донного среза. В схеме течения второго вида полу-

бесконечнымы будем называть сам означенный участок, всю эквива-

лентную поверхность, а также её хвостовую часть и эквивалентное 

тело. Численное моделирование проводится с использованием алго-

ритмов метода дискретных вихрей [17, 18, 19]. В случае применения 

схемы течения с эквивалентной полубесконечной поверхностью моде-

лирование применяются панели, вихревые многоугольники и П-образ-

ные вихревые нити [20]. Опубликованные результаты исследований, 
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выполненных с применением указанной методики, относятся к изуче-

нию режимов обтекания при нулевых углах атаки. В данной статье 

рассматривается распространение области применения методики с эк-

вивалентной  полубесконечной поверхностью на моделирование обте-

кания тел с ненулевыми углами атаки. 

Построение схемы течения. Моделируется обтекание цилиндри-

ческих тел с головной частью оживальной формы и плоским донным 

срезом при ненулевых углах атаки. Используются безразмерные зна-

чения длин и координат, которые получаются отношением соответ-

ствующей размерной величины к диаметру миделевого сечения *

md . 

Поэтому безразмерное значение диаметра миделевого сечения прини-

мается равным единице 1md  . У исследуемых тел сопряжение поверх-

ностей оживальной (11)  и цилиндрической частей (12)  осуществ-

ляется плавно без излома образующей. Безразмерные длины головной  

( gl )  и цилиндрической  ( сl ) частей измеряются вдоль координатной 

линии Ox  от точки O  до точки G  и  от точки G  до точки D , соот-

ветственно.  Поверхность оживальной головной части образована вра-

щением вокруг оси Ox  дуги радиуса gR , который можно выразить че-

рез длину головной  части по формуле 2 1/ 4g gR l  .  Таким образом 

геометрическая форма исследуемого обтекаемого тела полностью 

определяется безразмерными длинами  головной  и  длины  цилиндри-

ческой  частей. Суммарная длина обтекаемого тела равняется g cl l  и  

обозначается  через bl . 

Конфигурация поверхности хвостовой части эквивалентного тела 

формируется, ориентируясь на реализацию упомянутого выше требо-

вания её достаточной простоты.  Сначала в соответствии с рекоменда-

циями работы [15] строится начальное приближение формы  поверх-

ности 
 2

  хвостовой части, соответствующее  режиму обтекания с ну-

левым углом атаки   (рис. 2а). При этом определяются начальные 

приближения для значений диаметра sd  полубесконечного участка и  

длины sl  (вдоль оси l  от точки D  до точки S )  участка 
 21

   поверх-

ности  хвостовой  части  эквивалентного тела .  

Затем осуществляется плавная деформация участка 
 21

  хвосто-

вой части  эквивалентной поверхности обеспечивающая поворот по-

лубесконечного участка на такой угол чтобы его ось оказалась парал-

лельной вектору скорости набегающего потока  (рис. 1 и 2б, в). Для 

исследуемых тел указанная деформация получалась посредством ис-

кривления оси участка поверхности 
 21

  с сохранением прямолиней-

ности оси  полубесконечного участка 
 22

 .  В данной статье радиус 
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искривления sR  принимается постоянным  и предполагается, что в се-

чениях поверхности 
 22

 , перпендикулярных к оси, получаются 

окружности , диаметр которых  уменьшается от значения 1md   до 

диаметра sd  полубесконечного участка с сохранением закона измене-

ния площади поперечного сечения, определенного при нулевом угле 

атаки.  

Математическая модель, вихревая схема течения и алгоритм 

решения. Рассматривается установившееся  пространственное обте-

кание исследуемого тела заданной геометрической формы  потоком 

газа с умеренной дозвуковой скоростью. Газовая среда считается не-

сжимаемой, однородной и невесомой, а её движение описывается си-

стемой, состоящей из уравнения неразрывности и уравнений движе-

ния в форме Эйлера. 

 

0;

1
;

1
;

1
,

u v w

x y z
u u u u p

u v w
t x y z x
v v v v p

u v w
t x y z y
w w w w p

u v w
t x y z z







  
    

    
     
     
    
     
    
    

    
     

  (1) 

где  , , ,u v w   и p — координаты вектора скорости, плотность и ста-

тическое давление частиц среды, определяемые в декартовой системе 

координат Oxyz , связанной с обтекаемым телом. Вектор скорости по-

тока определяется по формуле V ui vj wk   .   

Согласно граничному условию непротекания поверхности эквива-

лентного тела нормальная к этой поверхности составляющая вектора 

скорости частиц среды равняется нулю: 

 0 0( ) ( ) 0,V M n M     

где  0 0 0 0, ,M x y z  — произвольная точка на поверхности  ; 0( )n M  —

орт вектора нормали  к   в точке 
0M . 

В соответствии с граничным условием затухания возмущений  

вектор скорости частиц среды 0( )V M ui vj wk   при R   

2 2 2

0 0 0x y z     должен стремиться к вектору скорости набега-

ющего потока V u i v j w k      . 
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Предполагается, что вне поверхности эквивалентного тела тече-

ние является потенциальным. Поэтому вектор возмущенной скорости, 

равный разности 
0( )V M V , считается равным градиенту потенциала 

0( )M  возмущенных скоростей, а вектор скорости частиц среды нахо-

дится по следующей формуле:  

    0 0 ,V M V M    (2) 

где 
0 0 0

i j j k
x y z

  
   

  
 — оператор Гамильтона.   

Подстановка соотношения (2) в уравнение неразрывности из си-

стемы (1) дает уравнение Лапласа для потенциала возмущенных ско-

ростей. В соответствии с граничными условиями непротекания по-

верхности обтекаемого тела и затухания возмущений на бесконечно-

сти потенциал возмущенных скоростей является решением следую-

щей внешней задачи Неймана для уравнения Лапласа:  

  0 00, ;M M     (3) 

 
 

  0

0

0 , ;M
M

V n M
n


 




  


   (4) 

  0lim 0,
R

M


   (5) 

  0lim 0,
R

M


    (6) 

где 
2 2 2

2 2 2

0 0 0x y z

  
   

  
 — оператор Лапласа; 0( )n M  — орт нормали  

к поверхности   в точке 
0M . 

Внешняя задача Неймана (3)–(6) имеет единственное решение, ко-

торое ищется в виде потенциала двойного слоя 

   3

1 ( )
( ) ,

4
M

r n M
g M d

r








   (7) 

где r  — вектор, направленный в точку вычисления 
0M  из точки M , 

расположенной на элементарной площадке d  с площадью d  и ор-

том вектора нормали  n M ; r  — модуль вектора r ;  g M  — поверх-

ностная плотность потенциала двойного  слоя. 

Потенциал возмущенных скоростей  0M  является решением 

сформулированной внешней задачи Неймана для уравнения Лапласа 
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(3)–(6), если его поверхностная плотность удовлетворяет следующему 

интегральному уравнению (7): 

 03

1 ( )
( ) ( ).

4

r n M
g M d V n M

n r







 
  

    (8) 

При численном решении интегрального уравнения (8) участки 
 11

 , 
 12

   и 
 21

   поверхности эквивалентного тела аппроксимируется 

набором панелей 
k , 1,...k N , на каждой из которых плотность по-

тенциала двойного слоя считается постоянной величиной, равной 
kg , 

1,...,k N . В случае ненулевых углов атаки и скольжения для аппрок-

симации эквивалентной поверхности  применяется набор прямоуголь-

ников и треугольников [20], а  на участке 
 21

  хвостовой  части  экви-

валентного тела дополнительно используются трапеции и четырех-

угольники произвольной формы. Полубесконечный участок 
 22

  эк-

вивалентного тела моделируется панелями 
k  1,..., rk N N N   , 

представляющими собой прямоугольники, у которых одна из сторон 

устремляется в бесконечность (будем называть их полубесконечными 

прямоугольниками); здесь rN  —  количество панелей указанного рода.  

Поверхностная плотность потенциала двойного слоя на каждом полу-

бесконечном прямоугольнике также считается постоянной величиной, 

равной  
kg  1,..., rk N N N   . Обозначим суммарное число панелей 

rN N   через 
tN . В соответствии с формулами (2) и (7) скорость по-

тока газовой среды определяется соотношением 

 
0 3

1

1 ( )
( ) ( ( ) ).

4

t

k

N

k

k

r n M
V M g g M d

r
V 

 




      (9) 

Если ввести в рассмотрение векторы функции скорости, индуци-

рованной в точке 
0M  потенциалом двойного слоя, который размещен 

на панели 
k   1,..., tk N  и имеет постоянную поверхностную  плот-

ность 
kg   

  0 3

1 ( )
,

4
k

k

r n M
w M d

r






     

то равенство (9) примет следующий вид: 

  0 0

1

( ) ( ) .
tN

k k

k

V M V g w M



     



Моделирование дозвукового отрывного обтекания тел… 

37 

Градиент потенциала двойного слоя, размещенного на панели 
k   

с постоянной плотностью 
kg , равен [18] вектору скорости, индуциро-

ванной замкнутой вихревой нитью kL , расположенной на границе k   

указанной  панели  и имеющей  циркуляцию  

 k kg     (10) 

Следовательно, справедливо соотношение 

 
3 3

( )
( ) ,

4 4
k

k k

Lk

g r n M ds r
g M d

r r


 

 
     

а векторы функции скорости, можно вычислять по формуле 

  0 3

1
, 1,..., .

4
k

k

L

t
ds r

w M k N
r


 

 
  (11) 

В соответствии с законом Био-Савара каждый из указанных век-

торов равен вектору скорости, индуцированной в точке 0M  вихревой 

нитью kL  с единичной циркуляцией. Представление векторов 

 0kw M  функции скорости в форме (11) позволяет отыскивать ско-

рость частиц газа в виде суммы скорости набегающего потока и ско-

ростей, индуцируемых всеми вихревыми нитями, моделирующими 

поверхность тела  

    0 0

1

Г ,
tN

k k

k

V M V w M



    (12) 

и использовать алгоритмы метода дискретных вихрей [19] .  

Для нахождения численного решения на границах панелей 
k , 

имеющих конечные размеры, располагаются вихревые многоуголь-

ники kL , 1,...,k N  циркуляции 
k  которых подлежат определению в 

ходе дальнейших вычислений. Каждый из этих вихревых многоуголь-

ников kL  составляется  из  вихревых отрезков kjL ,  1,...,k N ;  

1,..., kj T  ,  где  kT  — число сторон  данного многоугольника. Для вих-

ревого многоугольника kL  вектор  0kw M  функции скорости нахо-

дится как сумма векторов  0kjw M   функций скорости составляющих 

его вихревых отрезков  

    0 0

1

, 1,..., .
kT

k kj

j

w M w M k N


    
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На границах полубесконечных прямоугольников 
k  ( k 

1,..., tN N   ), моделирующих участок 
 22

   хвостовой  части эквива-

лентной поверхности, размещаются П-образные вихревые нити kL , 

1,..., tk N N   . Два из трех вихревых отрезков, образующих каждую 

такую вихревую нить, являются полубесконечными. Подчеркивая по-

лубесконечность указанных объектов вводятся дополнительные обо-

значения: ПkL  ,  1,..., tk N N    — для  П-образных вихревых нитей и   

 П 0kw M  , 1,..., tk N N    ⸺ для  векторов функций скорости, инду-

цированных этими нитями в точке 
0M . Для всех вихревых много-

угольников , 1,...,kL k N  и П-образных вихревых нитей ПkL ,  

1,..., tk N N   векторы  функции скорости  0 , 1,...,kw M k N  и   

   0 П 0 , 1,...,k k tw M w M k N N    определяются по адаптирован-

ным для компьютерных вычислений формулам, представленным в ра-

боте [20]  через векторы  функции скорости конечных и бесконечных 

вихревых отрезков. 

Для нахождения циркуляций  Г , 1,...,k tk N  на некотором мно-

жестве состоящем из N   точек , 1,...,C N   , которые будем назы-

вать контрольными и располагать на панелях v , требуется выполне-

ние граничного условия (4) непротекания поверхности эквивалент-

ного тела. С целью сокращения количества неизвестных, циркуляции 

П-образных вихрей, которые располагаются вниз по потоку от линии 

sL  стыковки  участков  21
  и  22

  эквивалентной поверхности, счи-

таются равными циркуляциям вихревых многоугольников конечных 

размеров, примыкающим к указанной линии с противоположной сто-

роны. Такой прием позволяет сократить число неизвестных циркуля-

ций с tN  до N .  Поэтому контрольные точки располагаются на по-

верхностях панелей , 1,..., N    конечных размеров, которые ап-

проксимируют всю поверхность эквивалентного тела, за исключением 

её полубесконечного участка. Координаты контрольной каждой точки 

vc  находится после определения её радиуса-вектора как среднего 

арифметического радиусов–векторов lr , соответствующих l -м вер-

шинам вихревого многоугольника kL , размещенного на границах па-

нели   и имеющего vT   сторон:  

 
1

(1/ ) , 1,..., .
T

C l

l

r T r


  



   N   
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Целесообразно ввести в рассмотрение преобразованные векторы 

функции скорости, индуцированной в точке 
0M  , которые определя-

ются следующим образом   

 
   

     

*

0 0

*

0 0 0П

, 1,..., ;

, 1,..., .
r

k k r

k rk k N

w M w M k N N

w M w M w M k N N N

  

    
  

Использую  преобразованные векторы функции скорости можно 

векторное равенство (12)  заменить соотношением  

    *

0 0

1

Г .
N

k k

k

V M V w M



    (13) 

Нормальная производная потенциала возмущенных скоростей, 

определяемого как потенциал двойного слоя, на поверхности эквива-

лентного тела непрерывна, поэтому граничное условие непротекания 

(4), выполняемое на множестве контрольных точек, записывается в 

следующем в виде:  

  *

1

Г ( ) ( ) ( ) , 1,..., .
N

k k

k

w C n C V n C N   



        (14) 

Вводя в рассмотрение величины  

 

* ( ) ( ), 1,..., , 1,..., ;

( ), 1,..., .

k ka w C n C N N

b V n C N

  

  

     

    
  

представим соотношения (14) как систему линейных алгебраических 

уравнений  

 
1

Г , 1,..., .
N

k k

k

a b N 



     

Решение этой системы с применением регуляризирующей функ-

ции, используемой в алгоритмах метода дискретных вихрей [17], поз-

воляет найти циркуляции вихревых многоугольников Г , 1,...,k N  . 

После нахождения циркуляций Гk  вектор скорости потока в точ-

ках, расположенных вне поверхности эквивалентного тела определя-

ется из соотношения (13). В контрольных точках, лежащих на поверх-

ности эквивалентного тела, вектор скорости как градиент потенциала 

двойного слоя испытывает разрыв своей тангенциальной составляю-

щей 

 1 21 2
( ) ( ) ( ) ( ) ( ) ,V C g C C g C C            (15) 
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где частные производные 
1
( )g C     и  

2
( )g C  вычисляются в кон-

трольной точке C   по двум направлениям, задаваемых неколлинеар-

ными ортами 
1( )C   и 

2 ( )C , лежащими в  плоскости, касательной к 

эквивалентной поверхности  . С учетом соотношения  (10)  частные 

производные  в формуле (15) определяются численным дифференци-

рованием по значениям циркуляций  -го и соседних с ним вихревых 

многоугольников.  Вектор  скорости газового потока в контрольных 

точках находится как предельное значение градиента потенциала 

двойного  слоя [18]: 

 
*

1

( ) ( ) 0,5 ( ).
N

k k

k

V C V Г w C V C  



      (16) 

Безразмерные коэффициенты давления 22( ) / ( )pc p p V     

находятся  из  интеграла  Бернулли   

 
2 20,5 ( ),p p V V      

где 
2 2 2, ,p p V u v w     и 2 2 2V u v w       ⸺ статические 

давления и модули векторов скорости газовой среды и набегающего 

потока, соответственно.  Поэтому в произвольной точке течения зна-

чение безразмерной скорости  /V V   определяет величину коэффици-

ента давления  

 21 ( / ) .pc V V    (17) 

Для корректировки значений длины sl  поверхности (21)  и диа-

метра sd    полубесконечного участка эквивалентного тела проводится 

итерационный цикл. Требуется выполнение условия  равенства рас-

четного осредненного значения коэффициента донного давления ( )p cc   

на линии cL
 
 стыковки носовой и хвостовой частей эквивалентной по-

верхности и оценочного значения коэффициента донного давления 

( )p sc , который определяется по оценочному значению аэродинамиче-

ского коэффициента донного сопротивления ( )
донx sc    носовой    части  

эквивалентного тела. При  обтекании  осесимметричных  тел с  нуле- 

левыми углами атаки картина течения оказывается осесимметричной,  

значение коэффициента давления pc   одинаково во всех точках линии 

стыковки cL   и принимается за расчетное значение коэффициента 

( )p cc .  В случае ненулевых углов атаки расчетное значение ( )p cc   
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определяется как среднее интегральное значение коэффициента дав-

ления pc   на линии стыковки cL . Предполагается, что оценочное зна-

чение коэффициента донного сопротивления ( )
донx sc   для удлиненных 

цилиндрических тел с головной частью и донным срезом складывается 

из двух составляющих. Первая составляющая вычисляется по фор-

муле  Хорнера ([14,16,20]) и определяется геометрическими парамет-

рами обтекаемого тела и числом Рейнольдса, которое находится по 

скорости набегающего потока и по суммарной длине обтекаемого тела 

tl
  . Вторая составляющая пропорциональна некоторой степени мо-

дуля угла атаки. Как в процессе отработки такого подхода, так и в дан-

ной статье считается,  что при малых углах атаки  второй составляю-

щей можно пренебречь. 

Цикл корректировки завершается выбором  таких значений длины 

sl  поверхности 
 21

   и диаметра sd  полубесконечного участка, при 

которых выполняется равенство ( ) ( )p c p sc c . В ходе проведения 

цикла  дополнительно обеспечивается соответствие значения диа-

метра sd  параметрам дальнего следа [13] , образующегося за обтекае-

мым телом. Для обеспечения такого соответствия требуется выполне-

ние соотношения 2 xsd c , где xc  ⸺ аэродинамический коэффици-

ент суммарного сопротивления обтекаемого тела.  Здесь коэффициент 

xc  равняется сумме аэродинамических коэффициентов сопротивления 

давления 
pxc  и трения xc


 и  коэффициента донного сопротивления 

:
дон p донx x x x xc c c c c


   . Значения всех указанных коэффициентов по-

лучаются отнесением к скоростному напору набегающего потока и 

площади миделевого сечения.  В ходе выполнения коррекционного 

цикла аэродинамические коэффициенты сопротивления давления 
pxc  

и трения xc


 определяются интегрированием коэффициентов давления 

pc   и  поверхностного трения fc ,  соответственно, по носовой поверх-

ности 
 1

  эквивалентного тела.  Местный коэффициент поверхност-

ного трения fс  находится как для турбулентного  пограничного слоя  

на плоской пластине [17] по формуле 2,580.455(lg Re)fc  . Коэффици-

ент донного сопротивления 
донxc    для исследуемых в данной статье тел 

с плоским торцем за цилиндрическим участком обтекаемого поверх-

ности вычисляется как взятое с обратным знаком расчетное значение 

коэффициента донного давления  p s
c  .  



В.Н. Тимофеев 

42 

По скорректированным значениям длины sl   и диаметра sd  осу-

ществляется окончательный расчет распределения  модуля безразмер-

ной скорости v V V   и коэффициента давления pc  по поверхности 

обтекаемого тела.   

Результаты численного моделирования. По рассмотренной 

выше методике проводилось численное моделирование тел, у которых 

головная часть, имеющая оживальную форму, плавно переходит в ци-

линдрическую часть с плоским торцом в донной области. Безразмер-

ные длины головной и цилиндрической частей равняются gl  и cl , со-

ответственно.  Поэтому носовая 
 1

  часть эквивалентной поверхности 

составляется из оживального 
 11

  и цилиндрического  
 12

   участков 

с такими же длинами gl  и cl . 

 

Рис. 2.  Конфигурация эквивалентной поверхности  при 3сl  ,  1,25gl    и 

6Re 5 10   для различных углов атаки:  

а — 0  ; б — 6  ; в —  8    

 

В качестве примера применения методики с эквивалентной полу-

бесконечной поверхностью  представлены результаты моделирования 



Моделирование дозвукового отрывного обтекания тел… 

43 

обтекания тела с 3cl   и 1,25gl   при значении числа Рейнольдса 

6Re 5 10  . После  задания  плотности  , статического давления p , 

модуля вектора скорости набегающего потока  V  и угла атаки   по-

следовательными расчетами по представленным выше алгоритмам с 

проведением корректировочного цикла определяется конфигурация 

хвостовой (2)  части (2)  эквивалентной поверхности. Для  углов 

атаки  , равных  0 , 6 , 8 , полученные формы  эквивалентной по-

верхности представлены на рис. 2 а, б, в,  а при 4    —  на рис. 3. 

Поверхность  22
   полубесконечного  участка  хвостовой части экви-

валентного тела, имеющая постоянный диаметр md  и расположенная 

вниз по потоку от линии стыковки sL , на данных рисунках не изобра-

жается. 

 

Рис. 3. Конфигурация эквивалентной поверхности при  

3сl  ,  1,25gl  ,
 

4   и 
6Re 5 10   

 

Окончательный расчет распределения модуля безразмерной ско-

рости V V   и коэффициента давления pc  (рис. 4 и 5) по поверхно-

сти эквивалентного тела  проводится по соотношениям (16) и (17). 

 

Рис. 4. Распределение безразмерной скорости v  по поверхности 

эквивалентного тела при 3сl  ,  1,25gl   , 4   и 
6Re 5 10   
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Рис. 5. Распределение коэффициента давления  pс  по поверхности 

эквивалентного тела при 3сl  ,  1,25gl   , 4    и 6Re 5 10   

 

Для удобства анализа неравномерного распределение коэффици-

ента давления pc   по поверхности  эквивалентного тела строятся гра-

фики (рис. 6) зависимостей  ,pc f l   коэффициента давления от 

безразмерной координаты, отсчитываемой по оси l  в различных про-

дольных сечениях, расположение которых задается углом   (см. рис. 

1) . На рис. 6 кривые 1, 2 и 3 соответствуют верхнему, боковому и ниж-

нему продольным сечениям, получающимся при  значениях угла  , 

равных 0 , 90 , 180 . Следует отметить, что в боковом продольном 

сечении кривая 2 мало отличается от кривой, задающей распределение 

коэффициента давления при обтекании этого же тела с нулевым углом 

атаки. Данное совпадение объясняется тем, что в силу малости угла 

атаки при нахождении оценочного значения коэффициента донного 

сопротивления psc , не учитывалась вторая составляющая, пропорцио-

нальная некоторой степени модуля этого угла. Вид кривых 1 и 3 зако-

номерно соответствует ускорению или замедлению частиц газового 

потока в различных зонах поверхности эквивалентного тела (см. рис. 

4). Например,  при обтекании оживальной головной части с положи-

тельными углами атаки скорости частиц потока в нижней зоне поверх-

ности меньше, чем в соответствующих точках её верхней зоны. Из ин-

теграла Бернулли следует, что тогда, наоборот, давления в нижней 

зоне (кривая 3) будут больше, чем в верхней (кривая 1).  Поэтому 

наибольшие по абсолютному значению разрежения наблюдаются в 

верхней зоне на некотором расстоянии вниз по потоку от линии сопря-

жения головной и цилиндрической частей обтекаемого тела. Анало-

гичным образом, учитывая, что хвостовая часть эквивалентной по-

верхности изгибается вверх, можно объяснить взаимное расположе-

ние кривых 1 и 3 в области, примыкающей к донному срезу. 
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Рис. 6. Зависимость коэффициента давления pc   на поверхности эквивалентного 

тела от безразмерной продольной координаты l , отсчитываемой по оси  

эквивалентного тела, и угла    при 3сl  , 1,25gl  , 4    и  
6Re 5 10  :  

1 — 0  ; 2 — 90  ; 3 —  180    

 

Заключение. Предложены подходы, позволяющие расширить об-

ласть применения методики моделирования, использующей схему те-

чения с эквивалентной поверхностью, на задачи дозвукового отрыв-

ного обтекания тел при ненулевых углах атаки. Даны рекомендации 

по формированию конфигурации хвостовой части эквивалентной по-

верхности с полубесконечным участком. При численном моделирова-

нии методом дискретных вихрей снижена трудоемкость вычислений 

за счет учета специфики применяемой схемы течения и использования 

П-образных вихревых нитей. Проанализированы результаты матема-

тического моделирования обтекания цилиндрических тел с оживаль-

ной головной частью и донным срезом при малых углах атаки. Пред-

ложенная методика может также применяться для расчета параметров 

внешнего невязкого потока в задачах пограничного слоя и в практиче-

ских задачах для оперативной оценки распределения скорости  и дав-

ления на поверхности обтекаемого тела.  
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Simulation of the subsonic detachable body with a bottom 

cut on the current pattern with an equivalent half-infinite 

surface at small angles of attack 

© V.N. Timofeev 

Bauman Moscow State Technical University, Moscow, 105005, Russia 
 
 
 
 
 

The subsonic flow of cylindrical bodies with a detachment located in the vicinity of the 

bottom cut is considered. The current scheme with an equivalent surface, which is accom-

panied by a half-infinite section is used. Recommendations have been given on the for-

mation of a configuration of such an equivalent semi-infinite surface at non-zero attack 

angles. The laboriousness of the calculations is reduced by taking into account the specifics 

of the applied flow pattern and the use of P-shaped vortex threads in the method of discrete 

vortexes. The results of mathematical modeling of the flow of cylindrical bodies with a 

revitalized head and a bottom slice at small angles of attack are presented. 

 
 

Keywords: mathematical simulation, subsonic detached flow, flow scheme, equivalent 

body, the method of single vortices 
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