533.6.011.5 Method of local surfaces for modeling pressure on a blunted cone in three-dimensional flow

Kotenev V. P. (Bauman Moscow State Technical University/JSC MIC NPO Mashinostroyenia), Puchkov A. S. (Bauman Moscow State Technical University/JSC MIC NPO Mashinostroyenia), Sapozhnikov D. A. (JSC MIC NPO Mashinostroyenia/МГТУ им.Н.Э.Баумана), Tonkih E. G. (JSC MIC NPO Mashinostroyenia/МГТУ им.Н.Э.Баумана)

SUPERSONIC GAS FLOW, DISCONTINUITY IN A BODY GENERATRIX CURVATURE, METHOD OF LOCAL SURFACES


doi: 10.18698/2309-3684-2019-3-100112


The paper considers a method for applying the analytical dependence to calculate the pressure on the surface of blunted cones in a supersonic gas flow at an angle of attack, taking into account the discontinuity in the generatrix curvature. To generalize the dependence on the case of three-dimensional flow, the method of local surfaces was used. The pressure coefficient on the surface of spherical bluntness is calculated separately from the conical part according to known ratios [1, 2]. The results were compared with empirical data and the results of accurate calculations in a strict mathematical formulation. The scope of applicability of the method is determined. From the comparison it follows that using the analytical formula for the pressure distribution on the surface of a blunted cone in three-dimensional flows in applied problems of aerodynamics allows significant simplifying calculations while maintaining good accuracy of the results.


Kotenev V.P. Matematicheskoe modelirovanie — Mathematical Models and Computer Simulations, 2014, vol.26, no.9, pp.141–148.
Kotenev V.P. Vestnik MGTU im. N.E. Baumana. Seria Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2011, Spetsialnyy vypusk: Matematicheskoe modelirovanie [Special issue: Mathematical Modeling], pp.150–153.
Kotenev V.P., Sysenko V.A. Matematicheskoe modelirovanie i chislennye menody — Mathematical Modeling and Computational Methods, 2014, vol.1, no.1, pp.68–81.
Bulgakov V.N., Kotenev V.P., Sapozhnikov D.A. Matematicheskoe modelirovanie i chislennye menody — Mathematical Modeling and Computational Methods, 2017, no.14, pp.81–93.
Puchkov A.S., Sapozhnikov D.A. Molodezhnyy nauchno-tekhnicheskiy vestnik (Youth Science and Technology Gazette), 2017, no.5. Available at: http://sntbul.bmstu.ru/doc/859337.html
Lunev V.V. Techenie realnykh gazov s bolshimi skorostyami [Flow of real gases with high velocities]. Moscow, Fizmatlit Publ., 2007, 327 p.
Ericsson L.E., AIAA Journal, 1971, vol.9, no.2, pp.297–304.
Krasnov N.F., Osnovy aerodinamicheskogo rascheta [Fundamentals of aerodynamic calculation]. Moscow, Vysshaya shkola Publ., 1981, 496 p.
Lyubimov A.N., Rusanov V.V. Techeniya gaza okolo tupykh tel [Gas flows near blunt bodies]. Moscow, Nauka Publ., 1970, 379 p.
Mayer C.S.J., Laible A.C., Fasel H.F. AIAA Journal, 2011, vol.49, no.1, pp.67–8.
Gauer M., Paull A. Journal of Spacecraft and Rockets, 2008, vol.45, no.3, 459–471.
Tissera Sh., Drikakis D. Journal of Spacecraft and Rockets, 2010, vol.47, no.4, pp.563–570.
Dimitrienko Yu.I., Kotenev V.P., Zakharov A.A. Metod lentochnykh adaptivnykh setok dlya chislennogo modelirovaniya v gazovoy dinamike [The Adaptive Banded Grid Method for Numerical Simulation in Gas Dynamics]. Moscow, Fizmatlit Publ., 2011, 280 p.
Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A. Matematicheskoe modelirovanie i chislennye menody – Mathematical Modeling and Computational Methods, 2015, no.4.pp.75–91.
Sarancev A.I. Uchenye zapiski TsAGI – TsAGI Science Journal, 1991, vol. XXII, no.1, pp.82–88.
Panteleev A.A. Metaevristicheskie algoritmy poiska globalnogo ekstremuma [Metaheuristic algorithms for global extremum search]. Moscow, MAI–PRINT Publ., 2009, 160 p.


Котенев В.П., Пучков А.С., Сапожников Д.А., Тонких Е.Г. Метод локальных поверхностей для моделирования давления на затупленном конусе при пространственном обтекании. Математическое моделирование и численные методы. 2019. № 3. с. 100–112.



Download article

Количество скачиваний: 3