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Рассмотрен способ применения аналитической зависимости для расчета давления 
на поверхности затупленных конусов, обтекаемых сверхзвуковым потоком газа 
под углом атаки, с учетом разрыва кривизны образующей. Для обобщения зависи-
мости на случай пространственного обтекания был использован метод локальных 
поверхностей. Коэффициент давления на поверхности сферического затупления 
рассчитан отдельно от конической части по известным соотношениям. Резуль-
таты сравнивали с эмпирическими данными и результатами точных расчетов  
в строгой математической постановке. Определена область применимости мето-
да. Из результатов сравнения следует, что использование аналитической формулы 
для распределения давления по поверхности затупленного конуса при простран-
ственных течениях в прикладных задачах аэродинамики позволяет существенно 
упростить вычисления при сохранении хорошей точности результатов. 
 
Ключевые слова: сверхзвуковой поток, разрыв кривизны образующей тела, метод 
локальных поверхностей 

 
Введение. Поскольку затупленный конус представляет собой 

распространенную аэродинамическую компоновку, важно опреде-
лить его аэродинамические характеристики с высокой точностью. 
Ранее была получена аналитическая зависимость для вычисления 
давления на затупленном конусе, обтекаемом сверхзвуковым невяз-
ким потоком под нулевым углом атаки, с учетом разрыва кривизны 
образующей [1�7]. Однако с практической точки зрения для решения 
задач аэродинамики интересны пространственные течения под нену-
левым углом атаки. 

Цель работы � адаптировать зависимость для вычисления дав-
ления на затупленном конусе, обтекаемом сверхзвуковым невязким 
потоком, для пространственных течений. 

Подход к решению. Искомое давление будем представлять в ви-
де коэффициента давления на поверхности тела 
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где P  � давление в некоторой точке на поверхности тела; ,P  ,  

V  � соответственно давление, плотность и скорость набегающего 
потока. 
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Давление P  набегающего потока и давление 0P   в точке тормо-

жения устанавливаются формулой Релея 
11
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где   � показатель адиабаты; М∞ � число Маха набегающего потока. 
С учетом (1) коэффициент давления можно записать в виде 
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Затупленный конус состоит из двух частей (сферического затуп-
ления и конической части), параметры течения на которых изменя-
ются по разным законам. Поместим начало координат на оси сим-
метрии конуса в точке, соответствующей абсциссе точки сопряжения 
конической и сферической частей. В точке сопряжения имеет место 
разрыв кривизны образующей. 

Для сферического затупления будем использовать соотношения, 
представленные в работе [1]: 
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где 
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
      � угол между продольной осью 

тела и вектором скорости в произвольной точке на поверхности сфе-
ры; **  � положение звуковой точки на поверхности сферы [1]. 

Для конической части будем применять зависимости, получен-
ные в работах [3, 4]. 

Коэффициент давления на конической поверхности затупленного 
конуса определяется по формуле  
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где 
сф.сопрPC  � коэффициент давления в точке сопряжения, опреде- 

ляемый по соотношениям для сферы; 
о.кPC  � коэффициент давления 
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острого конуса; *f  � коэффициент перехода на давление острого 

конуса; к  � угол полураствора конуса. 

Параметры гиперзвукового подобия   и * вычисляют по фор-

мулам [4] 
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где 
сфx

C  � коэффициент сопротивления сферического затупления, 

отнесенный к площади сечения, содержащего все точки сопряжения; 
R  � радиус сферического затупления;  к сопрtgr x r    � цилинд- 

рический радиус сечения конической части тела; сопрr  � цилиндри-

ческий радиус в точке сопряжения сферической и конической частей; 
xn � координата начала носовой части затупленного конуса; x � 
продольная координата тела. 

Экспонента в знаменателе первого слагаемого (4) и функция *f  

отвечают за установление переходного процесса, вызванного разры-

вом кривизны геометрии. Функция *f  имеет вид 
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Здесь  кM ,     представляет собой координату точки выхода 

на значение давления для острого конуса и определяется соотноше-
нием  
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Коэффициенты этой зависимости имеют вид (углы к  при вы-

числении коэффициентов измеряют в градусах) 
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  6 5 4 4
1 к к к

2 3 2
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6,3617 10 5,1957 10
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Коэффициент давления острого конуса вычисляют по описанной 
в асимптотике [8, 9]: 
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Параметр  кM ,     определяют аналогично вычислению 
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Коэффициенты этой зависимости имеют вид 
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Углы в этих соотношениях также измеряют в градусах. Коэффи-
циенты были найдены с помощью генетического алгоритма, описан-
ного в работе [4, 10]. 

Метод локальных поверхностей. Представленные выше соот-
ношения наглядно описывают распределение давления на поверхно-
сти затупленного конуса под нулевым углом атаки. Если применять 
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их для режимов, отличных от нулевого, следует прибегнуть к методу 
локальных поверхностей. Изложим его идею на рассмотрении остро-
го конуса с углом полураствора к .  

В основе метода лежит гипотеза равенства давления при одина-
ковых углах встречи потока с поверхностью тела. В соответствии  
с этим давление в каждой точке тела принимается таким же, как на 
поверхности местного конуса, обтекаемого потоком с тем же числом 
Маха, как и само тело [7], но под нулевым углом атаки (рис. 1). Соот-
ветственно, расчет давления на таком конусе следует проводить по 
тем же соотношениям, принимая угол к  равным углу эквивалентно-

го конуса .  

 
Рис. 1. Основной конус (а) и местный конус (б), поставленный под нулевым углом 

атаки к потоку 
 
Таким образом, задача определения давления на теле под углом 

атаки сводится к нахождению угла местного конуса, соответствую-
щего углу встречи потока с поверхностью тела [11].  

Рассмотрим произвольное сечение конуса плоскостью, нормаль-
ное к оси OX. Представим скорость невозмущенного потока в виде 
двух составляющих: cosV   (параллельную оси X ) и sinV   (нор-

мальную к оси X ). В меридиальной плоскости   нормальная состав-

ляющая sinV   может быть, в свою очередь, разложена на радиаль-

ную sin cosrV V    и тангенциальную sin sinV V     скорости. 

Отношение 

 tg cos tg , arctg tg cos ,
cos

V

V


 


        


 

определяет угол атаки потока в плоскости .  
Таким образом, коническое течение в меридиальной плоскости   

будет определяться не углом раствора конуса, а углом к .      
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Применение метода локальных поверхностей к затупленному 
конусу. Введем четырехугольную сетку на затупленном конусе (рис. 2), 
определим в каждой ячейке площадь и нормаль к центру масс ячейки. 
Применим соотношение (1) к каждой ячейке сферического затупления, 
определив локальный коэффициент давления. Вычислим коэффициент 
аэродинамической силы сопротивления сферического затупления 

сопр: 0

,ix i i
sph

i x

n Cp s
Cx

S
    

где 
ixn  � проекция нормали к i-й площадке на ось абсцисс; iCp  � ко-

эффициент давления на площадке; is  � площадь площадки; сопрS  � 

площадь сечения сопряжения. 

 

Рис. 2. Четырехугольная сетка  
на затупленном конусе 

 
Определим локальные углы атаки 

i
  на каждой площадке кони-

ческой части по формуле  

^ ,
2i

i
V

n
V






     
 
 

 

где in  � вектор внешней нормали к площадке; 

cos

sin

0

V

V





 
   
 
 

 � 

вектор набегающего потока. 
Каждую ячейку исходного конуса будем рассматривать как эле-

мент затупленного конуса с углом полураствора к .
i i      Точки 

сопряжения, а также коэффициент давления сопряжения, определен-
ный на сфере, локальных и исходного конусов совпадают. 

Коэффициент давления будем вычислять по формуле (4), подста-
вив вместо угла полураствора конуса угол .

i
  
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Анализ результатов. Для затупленных конусов с разными удли-
нениями и углом полураствора к 10   проводили сравнение коэф-

фициентов осевой и нормальной сил с данными, приведенными в ра-
ботах [8, 12], а также с данными численного расчета в рамках 
постановки задачи обтекания невязким потоком. Результаты сравне-
ния продемонстрированы на графиках (рис. 3). Далее в настоящей 
статье под методом локальных поверхностей будем понимать приме-
нение соотношений для определения давления на затупленном кону-
се под нулевым углом атаки к затупленному конусу, поставленному 
под углом атаки, с помощью метода локальных поверхностей. 

 

Рис. 3. Cравнение коэффициента осевой силы с известными данными 
 
На рис. 3 дано сравнение коэффициентов осевой силы, приведен-

ных в работе [13] (красные точки), с результатами, полученными по 
вышеописанному алгоритму (фиолетовые линии) при числе Маха 

M 8   для тел различного удлинения. Здесь 
мид

нR
R

r
  � степень за-

тупления. По оси абсцисс отложен угол атаки α, по оси ординат � 
коэффициент осевой силы Cx. Данные [8] оцифрованы с помощью 
программы GetData Graph Digitizer. 
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Рис. 4. Сравнение коэффициентов осевой и нормальной сил при разных числах 
Маха М∞: 

а � M 4;   б � M 6;   в � M 15;   г � M 20;   1 � осевая сила;  

2 � нормальная сила 
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На рис. 4 показано сравнение коэффициентов (по оси ординат) 
осевой и нормальной сил, полученных в рамках численного решения 
системы уравнений Эйлера [14, 15] (синяя линия) с применением 
предложенного алгоритма (красная линия) при углах атаки α (по оси 
абсцисс), разных числах Маха, угле полураствора конуса к 10   и 

длине конической части, равной 50 радиусам затупления. Графики, 
приведенные на рис. 4, свидетельствуют о сходстве в тенденциях, не-
существенно различаясь по значениям. Однако нельзя использовать 
данные, полученные в рамках решения системы уравнений Эйлера,  
в качестве эталона для сравнения. Эти данные были получены авто-
рами численным методом на грубой сетке, поэтому уместно сравнить 
полученные данные с табличными (рис. 5). 

 

Рис. 5. Сравнение результатов расчета и результа-
тов, полученных методом локальных поверхнос- 

тей, с табличными данными [5]: 
� расчетные данные;           � МЛП; 

� табличные данные 
 
Из рис. 5 видно, что данные, полученные по предложенному ме-

тоду, ближе к табличным данным. Результаты расчета расположены 
на графике выше табличных данных и результатов применения мето-
да локальных поверхностей, такая же тенденция прослеживается и на 
рис. 4. 

Выводы. Проведено обобщение зависимости для определения 
давления на затупленном конусе на случай пространственного обте-
кания с помощью метода локальных поверхностей. Сравнение ре-
зультатов с табличными данными и результатами расчетов показыва-
ет приемлемую точность предлагаемого метода. Высокая точность, 
низкая вычислительная сложность и простота реализации метода 
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позволяют применять метод локальных поверхностей при решении 
прикладных задач аэродинамики как самостоятельно, так и в составе 
вычислительных комплексов. 
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Method of local surfaces for modeling pressure  
on a blunted cone in three-dimensional flow 

©V.P. Kotenev1,2, A.S. Puchkov1,2, D.A. Sapozhnikov1,2, E.G. Tonkikh1,2 

1JSC MIC «NPO Mashinostroyenia», Reutov, Moscow region, 143966, Russia 
2Bauman Moscow State Technical University, Moscow, 105005, Russia 

 
The paper considers a method for applying the analytical dependence to calculate the 
pressure on the surface of blunted cones in a supersonic gas flow at an angle of attack, 
taking into account the discontinuity in the generatrix curvature. To generalize the de-
pendence on the case of three-dimensional flow, the method of local surfaces was used. 
The pressure coefficient on the surface of spherical bluntness is calculated separately 
from the conical part according to known ratios [1, 2]. The results were compared with 
empirical data and the results of accurate calculations in a strict mathematical formula-
tion. The scope of applicability of the method is determined. From the comparison it fol-
lows that using the analytical formula for the pressure distribution on the surface of  
a blunted cone in three-dimensional flows in applied problems of aerodynamics allows 
significant simplifying calculations while maintaining good accuracy of the results. 
 
Keywords: supersonic gas flow, discontinuity in a body generatrix curvature, method of 
local surfaces 
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