doi: 10.18698/2309-3684-2019-3-5785
The paper proposes the theory for optimized selection of linear increasing over time mass-flow rates of energy devices designed for craft gas dynamic ejection from a launch container under the specified restrictions on parameters. Theory is also proposed for optimized selection of geometrical parameters of multigrain tubular charge for implementing these mass-flow rates. A visual geometric interpretation of theoretical developments is presented, and their practical feasibility is confirmed by numerical simulations of parameters of gas-dynamic ejection and internal ballistics processes.
Sokolovsky M.I., Petrenko V.I., Zykov G.A., Lyanguzov S.V. Upravlyayemye energeticheskie ustanovki na tverdom toplive [Controlled solid propellant power plants]. Moscow, Machinostroenie Publ., 2003, 464p.
Lipanov A.M., Milekhin Yu.M., eds. Vnutrennyaya ballistika RDTT [Internal ballisics of solid propellant engines]. Moscow, Mashinostroyenie Publ., 2007, 504p.
Erokhin B.T. Teoriya i proektirovanie raketnykh dvigatelei [Theory and Design of Rocket Engines]. St. Petersburg, Lan Publ., 2015, 608p.
Fakhrutdinov I.Kh., Kotelnikov A.V. Konstruktsiya i proektirovaniye raketnykh dvigatelei tverdogo topliva [Structure and Design of Solid Propellant Engines]. Moscow, Machinostroyenie Publ., 1987, 328p.
Zhykov G.A., Ioffe E.I., Ognev S.V., Sokolovsky M.I., Sakov Yu.L. Formirovanie tekhnicheskogo oblika i osnovnye kharakteristiki RDTT dlya konversionnykh programm [Conceptual design and main characteristics of solid propellant engines for the conversion programs]. Sbornik trudov “Raketno-kosmicheskaya tekhnika” [Collection of works “Rocket and space technology”]. 2004, ser. XIV, no.1 (50), part I, pp.76–86.
Dimitrienko Yu.I., Dimitrienko I.D. Combustion and Flame, 2000, vol.122, pp.211–226.
Smirnov N.N., Dimitrienko.I.D. Fisika goreniya i vzryva — Combustion, Explosion and Shock Waves, 1990, no.4, pp.14–22.
Jackson T.L., Buckmaster J. AIAA Journal, 2002, v.40, no.6, pp.1122–1130.
Glick R.L. Journal of Spacecraft and Rockets, 1979, vol.16, no.1, pp.58–59.
King M.K. Journal of Spacecraft and Rockets, 1979, vol.16, no.3, pp.154–162.
Langlois G., Gonard R. Journal of Spacecraft and Rockets, 1979, vol.16, no.6, pp.357–360.
Voropaev I.D. Vosplamenenie tverdogo topliva pri prokhozhdenii elektricheskogo proboya vdol ego poverkhnosti [Solid propellant ignition during electrical breakdown along its surface]. Sbornik trudov “Raketno-kosmicheskaya tekhnika” [Collection of works “Rocket and space technology”]. 2012, ser. XIV, no.1 (58), pp.103–113.
Sorkin R.E. Teoriya vnutrikamernykh protsessov v raketnykh sistemakh na tverdom toplive: vnutrennyaya ballisika [Theory of intrachamber processes in solid propellant systems: Internal ballistics]. Moscow, Nauka Publ., 1983, 288p.
Alemasov V.E., Dregalin A.F., Tishin A.P. Teoriya raketnykh dvigatelei [Rocket Engine Theory]. Moscow, Mashinostroyenie Publ., 1989, 464p.
Dimitrienko Yu.I., Izotova S.G., Anufriev S.N., Zakharov A.A. Vestnik MGTU im. N.E. Baumana. Seria Estestvennye nauki – Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2005, no.3, pp.139–146.
Dimitrienko Yu.I., Kulagin Yu.A., Yarmola A.P. Vestnik MGTU im. N.E. Baumana. Seria Estestvennye nauki – Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2011, Spetsialnyy vypusk “Matematicheskoe modelirovanie” [Special issue “Mathematical Modelling”], pp.100–109.
Arzumanov Yu.L., Petrov R.A., Khalatov E.M. Systemy gazosnabzheniya i ustroystva pnevmoavtomatiki raketno-kosmocheskikh kompleksov. [Gas supplying systems and pneumatic devices of space-rocket complexes]. Moscow, Mashinostroyenie Publ., 1997, 464p.
Arzumanov Yu.L., Khalatov E.M., Chekmazov V.I. Matematicheskie modeli system pnevmoavtomatiki [Mathematical Models of Pneumatic Automation Systems]. Moscow, BMSTU Publ., 2009, 296p.
Apalkov Yu.V., Mant D.I., Mant S.D. Otechestvennye ballisticheskie rakety morskogo bazirivaniya i ikh nositeli [Domestic sea-based ballistic missiles and their carriers]. St. Petersburg, Galeya Print Publ., 2006, 216p.
Plusnin A.V., Bondarenko L.A., Sabirov Yu.R. Analiz gazogidrodinamicheskikh protsessov i metodov ikh rascheta na osnove opyta predpriyatiya v otrabotke podvodnogo minometnogo starta [Analysis of gas-hydrodynamic processes and methods of their calculation based on the experience of the enterprise in the development of an underwater mortar launch]. Raketnye kompleksy i raketno-kosmicheskie sistemy – proyektirivanie, eksperimentalnaya otrabotka, letnye ispytaniya, ekspluatatsiya: Trudy sektsii 22 imeni akademika V.N. Chelomeya XXXIX Akademicheskikh chteniy po kosmonavtikye [Proceedings of the section 22 named after academician V.N. Chelomey of XXXIX Academic readings on space technology: Missile and rocket-space systems – designing, experimental testing, fly tests, operation]. Reutov, JSC ”MIC “Mashinostroyeniya” Publ., 2015, pp.74–83.
Plusnin A.V. Matematicheskoe modelirovanie i chislennye menody – Mathematical Modeling and Computational Methods, 2017, no.1, pp.55–77.
Papa Rao B.V., Subhananda Rao A. Multi Perforated Grain Design For Hot Gas Generator // 51 AGM & Seminar on Advances in Aerospace Technologies (SAAT-2000). Abstracts. – Hyderabad, Aeronautical Society of India, 2000, p.17.
Plusnin A.V. Vestnik MGTU im. N.E. Baumana. Seria Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2012, Spetsialnyy vypusk “Matematicheskoe modelirovanie” [Special issue “Mathematical Modelling”], pp.86–95.
Alemasov V.E. Teoriya raketnykh dvigatelei [Rocket Engine Theory]. Moscow, Oborongiz Publ., 1962, pp.478.
Vaulin S.D., Kirillov V.V., Feofilaktov V.I. Matematicheskaya model gazodinamicheskikh protsessov v nizkotemperaturnom gazogeneratore s kameroi okhlazhdeniya [Mathematical model of gas-dynamic processes in a low-temperature gas generator with a cooling chamber]. Sbornik trudov “Raketno-kosmicheskaya tekhnika” [Collection of works “Rocket and space technology”]. 2004, ser.XIV, no.1 (50), part I, с. 181–190.
Plusnin A.V., Sabirov Yu.R. Utochnenie formul dlya prognozirivaniya potrebnykh tyago-raskhodnykh kharakteristik energoustroistv gazodinamicheskogo vybrosa letatelnykh apparatov s ispolzovaniem rezultatov chislennogo modelirovaniya [Refinement of formulas for predicting the required thrust-and-discharge characteristics of power devices for gas-dynamic aircraft ejection using numerical modeling results]. Sbornik tezisov. XLIII Akademicheskiye chteniya po kosmonavtike [XLIII Academic readings on space technology. Abstracts]. — Moscow, BMSTU Publ., 2019, pp.300–302.
Kurosh A.G. Lektsii po obshchey algebre [Lectures on general algebra]. Moscow, GIFML Publ., 1962, 396 p.
Lavrentyev M.A., Shabat B.V. Metody teorii funktsiy kompleksnogo peremrnnogo [Metods of complex variable theory]. Moscow, Nauka Publ., 1987, 688p.
Plyusnin A.V. Matematicheskoe modelirovanie i chislennye menody – Mathematical Modeling and Computational Methods, 2014, no.3, pp.55–73.
Plusnin A.V. Proyektirovanie gazodinamicheskogo vybrosa LA iz puskovogo konteynera s uchetom spetsifiki gazotermodinamicheskikh yavleniy [Designing the gas-dynamic ejection of a craft from a launch container, taking into account the specifics of gas-thermodynamic phenomena]. Raketnye kompleksy i raketno-kosmicheskiye sistemy – proyektirivaniye, eksperimentalnaya otrabotka, letnye ispytaniya, ekspluatatsiya: Trudy sektsii 22 imeni akademika V.N. Chelomeya XLII Akademicheskikh chteniy po kosmonavtikye [Proceedings of the section 22 named after academician V.N. Chelomey of XLII Academic readings on space technology: Missile and rocket-space systems – designing, experimental testing, fly tests, operation]XLII Akad’emicheskikh cht’eniy po kosmonavt’ikye [Proceedings of the section 22 of XLII academic readings on space technology: Missile and rocket-space systems – designing, experimental testing, fly tests, operation]. Reutov, JSC ”MIC “Mashinostroyeniya” Publ., 2018, pp.254–271.
Plyusnin A.V. Matematicheskoe modelirovanie i chislennye menody — Mathematical Modeling and Computational Methods, 2016, no.3, pp.53–78.
Плюснин А.В. Математические методы оптимального выбора линейно нарастающих по времени массорасходных характеристик энергоустройств, обеспечивающих газодинамический выброс летательных аппаратов с заданными параметрами. Математическое моделирование и численные методы, 2019, № 1, с. 57–85.