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Предложена теория оптимального выбора линейно нарастающих по времени массо- 
расходных характеристик энергоустройств, предназначенных для газодинамичес- 
кого выброса летательного аппарата из пускового контейнера при заданных огра-
ничениях на параметры, а также теория оптимального выбора геометрических 
параметров многошашечного трубчатого заряда для реализации этих характерис- 
тик. Представлена наглядная геометрическая интерпретация теоретических по-
строений, а их практическая реализуемость подтверждена расчетами парамет-
ров газодинамического выброса и внутренней баллистики. 
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Введение. Энергоустройства (ЭУ) на твердом топливе (напри-

мер, ракетные двигатели, газогенераторы) находят широкое практи-
ческое применение и активно совершенствуются по целому ряду 
направлений [1�5]. Среди важнейших задач � улучшение качеств 
существующих и разработка новых химических составов твердого 
топлива в соответствии с теми или иными потребностями. Для реше-
ния этих задач принципиальное значение имеют теоретические и 
экспериментальные исследования собственно механизмов горения 
твердого топлива [1, 6�10]. Исключительно важны также технологи-
ческая и эксплуатационная стороны вопроса [1, 2, 11, 12]. 

Ракетные двигатели должны обеспечивать определенные законы 
изменения тяги, приложенной к летательному аппарату (ЛА). Соответ-
ственно, особое внимание уделяется совершенствованию энергетиче-
ских характеристик ракетных двигателей путем совершенствования не 
только свойств топлива, но и рабочих процессов в камере сгорания 
(КС) и в сопловой части ЭУ. Безусловно, это немыслимо без детально-
го численного моделирования этих процессов [13�16]. 

ЭУ другого типа, именуемые обычно газогенераторами (ГГ), спе-
циально разрабатывают в целях организации рабочих процессов в ка-
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ком-либо замкнутом объеме (ЗО), внешнем по отношению к ЭУ.  
В этих процессах движущей силой является избыточное давление, со-
здаваемое в ЗО продуктами сгорания, поступающими из ЭУ [17, 18]. 
Подобные ЭУ часто используются в газодинамических схемах вы-
броса (ГДВ) ЛА из пускового контейнера (ПК) [19�21]. Присущая ГГ 
высокая эффективность применения связана не только с аккумулиро-
ванием в ЗО дополнительной массы рабочей среды, но и с достаточно 
высокой температурой этой среды. Благодаря компактности кон-
струкции внутрикамерные (внутрибаллистические) процессы в ГГ 
часто можно удовлетворительно описать, оперируя простыми соот-
ношениями, характеризующими изменение поверхности горения во 
времени и баланс между притоком вещества с поверхности горения и 
его уносом через сопло [13, 21]. Основная трудность обычно заклю-
чается в получении априори зависимости площади горения топлива 
от толщины слоя (свода), выгорающего в направлении нормали к по-
верхности горения [2�4, 13, 14, 21�23]. 

Высокотемпературная среда не всегда допустима в системах, 
функционирующих на поршневом эффекте. Тогда, в качестве проме-
жуточного решения между использованием пневматических систем 
на холодном газе высокого давления или обычных ГГ могут приме-
няться так называемые низкотемпературные ГГ, например парогазо-
генераторы [24, 25]. 

В общем случае проектирование ГГ должно начинаться с опреде-
ления требований к временнóй зависимости его массового расхода. 
Следующая задача, также имеющая в основном теоретический харак-
тер, заключается в расчете подходящих формы и размеров заряда, 
при горении которого должна будет получиться требуемая массо-
расходная характеристика (МРХ). Достичь практически достаточно 
точного воспроизведения требуемой МРХ обычно не удается. Для 
этого геометрическая форма заряда должна быть настолько сложной, 
что при современных технологиях невозможно гарантировать безот-
казную и безопасную работу соответствующего ЭУ. По этой причине 
задачи оптимального выбора требуемой (теоретической) МРХ ГГ и 
оптимальной реализации этой МРХ в форме твердотопливного заря-
да не могут быть чисто математическими. Следовательно, концеп-
ции, положенные в основу решения таких задач, должны отражать 
это обстоятельство, пусть и в неявной форме, ограничивая свободу 
выбора построениями, обладающими некоторой естественной (инже-
нерной) простотой. 

Данная работа посвящена рассмотрению последних двух задач и 
является непосредственным предметным и идейным продолжением 
работы [21]. В первой ее части решается задача оптимального выбора 
теоретической МРХ ЭУ из класса линейно нарастающих по времени 
зависимостей. МРХ такого типа имеют, по-видимому, более широкое 
применение [4] по сравнению с МРХ, рассмотренными в работе [21]. 
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При этом в общем виде теория оптимального выбора линейно нарас-
тающих по времени МРХ строится аналогичным образом. Однако 
поскольку параметры, определяющие конкретные кривые, должны 
быть другими, математические вычисления приходится существен-
ным образом перестраивать. 

Во второй части работы рассматривается задача оптимальной ре-
ализации линейно нарастающих по времени МРХ в форме заряда, со-
стоящего из определенного набора трубчатых шашек [2, 4, 26]. В от-
личие от работы [21], в которой демонстрируется только пример 
реализации линейно-постоянной МРХ в форме моноблочного много-
канального заряда, ввиду аналитической простоты формул, описы-
вающих площадь поверхности горения трубчатого заряда, удается 
получить, как представляется, исчерпывающее решение поставлен-
ной задачи. 

При выполнении математических построений и пересчете теоре-
тической МРХ в соответствующую зависимость потребной площади 
поверхности горения заряда, а также при проведении расчетов, под-
тверждающих правильность теоретических выводов, приходится 
многократно прибегать к численному моделированию ГДВ ЛА из ПК 
и внутрибаллистических процессов в ЭУ. Поскольку соответствую-
щие системы уравнений и методы их решения подробно описаны ра-
нее [21], в настоящей работе они не приводятся. 

Оптимизация выбора номинальной МРХ ЭУ с линейным 
нарастанием расхода по времени. Аналогично работе [21] рассмот-
рим задачу определения МРХ ЭУ, предназначенного для осуществле-
ния ГДВ ЛА из ПК. Данная задача состоит в выборе некоторой опор-
ной (номинальной) МРХ, практическая реализация которой во всем 
диапазоне разбросов определяющих параметров позволяла бы опти-
мально удовлетворить основным ограничениям, накладываемым на 
параметры движения ЛА в ПК: 

    ПК ПК
вых вых

min
,V V       ПК

max
max

.A A                    (1) 

Здесь   ПК
вых

min
V  и   ПК

max
max

A  � заданные значения минимальной 

скорости выхода ЛА из ПК и максимального ускорения ЛА при дви-
жении в ПК. Помимо того, следует стремиться и к снижению макси-

мального давления раскупорки ПК   ПК
вых

max
p  [20]. 

Потребная МРХ такого ЭУ должна иметь характер монотонно 
возрастающей зависимости [21]. Однако обычно прогрессивность 
МРХ (отношение максимального значения расхода ЭУ к начальному 
расходу) ограничена. В таком случае лучшие результаты в удовле-
творении ограничений (1) дает выбор МРХ из класса линейно-
постоянных зависимостей [21]. 
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В то же время более широкие возможности размещения ЭУ в ЗО 
ПК появляются при использовании зарядов, составленных из необхо-
димого количества однотипных шашек (многошашечные заряды). 
Благодаря некоторому произволу в выборе геометрических размеров 
отдельной шашки и общего числа шашек проектирование многоша-
шечных зарядов обладает дополнительными вариативными возмож-
ностями. Далее будут рассматриваться шашки трубчатой формы,  
забронированные по внешней боковой поверхности. По мере выгора-
ния такой шашки площадь поверхности горения увеличивается, что 
обеспечивает прогрессивное нарастание массового расхода ЭУ. По-
скольку площадь поверхности горения вычисляют по простым ана-
литическим зависимостям, удается построить несложную процедуру 
определения параметров многошашечного заряда, позволяющую 
наилучшим образом воспроизвести потребную МРХ. 

Итак, для ГДВ ЛА из ПК будем искать потребные МРХ ЭУ  
в классе линейно возрастающих зависимостей. Точно так же, как и  
в теории линейно-постоянных МРХ [21], для описания этих зависи-
мостей необходимо выбрать небольшое число свободных параметров 
(желательно два) для получения наглядной геометрической интер-
претации. Выбрав в качестве таких параметров начальный расход ЭУ 

iG  и скорость его возрастания iG


 (рис. 1), получим достаточные 

данные для задания массового расхода ЭУ при движении ЛА в ПК. 
Время полного выгорания заряда ft  обычно выбирают с таким рас-

четом, чтобы на всех режимах работы ЭУ оно превышало время дви-

жения ЛА в ПК �  ПК .t  Таким образом, параметры ,ft  fG  (макси-

мальный расход ЭУ, реализующийся в момент полного выгорания 

заряда) и f

i

G

G
  (прогрессивность МРХ) на данном этапе во внима-

ние не принимаются. 
Далее зададимся набором параметров, характеризующих ГДВ ЛА 

из ПК, и диапазоном разбросов МРХ [21]. Математическая модель 
разбросов МРХ принимается точно такой же, как в работе [21], т. е. 
имеем 

          ЭУ ЭУЭУ ЭУ
,нач0 0,нач ,G t G t t t 

    
 

                     (2) 

где    ЭУG t  � МРХ, уклоняющаяся от номинальной на   процентов; 

1 0,01 ;      ЭУ
,начt  � моменты времени, в которые продукты сгорания 
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ЭУ начинают поступать в ЗО ПК, для простоты приняты равными  

нулю   ЭУ
,нач 0 ;t      ЭУ

0G t  � номинальная МРХ.  

Диапазон разбросов МРХ принят равным 20 %,  что соответ-
ствует неравенству 

min max0,8 1,2.                                     (3) 

 

Рис. 1. Линейно возрастающая МРХ: 

1 � момент времени 1;t   2 � момент выхода из ПК 
 ПК

;t t   

3 � момент выгорания заряда ft t  

 
Аналогично процедуре, описанной в работе [21], выполним серии 

расчетов ГДВ ЛА из ПК для построения на плоскости ,iG


 iG  кривой 

 min ,  для каждой из точек которой скорость выхода ЛА из ПК равна 

значению  ПК
min ,V  и кривой  max ,  для точек которой максимальное 

значение ускорения ЛА в ПК равно значению  ПК
max ,A  что соответству-

ет ограничениям (1). Тогда область значений , ,i iG G
 
 
 


 для которых 

одновременно выполнены ограничения (1), представляет собой криво-

линейный угол   (рис. 2). Границы этой области (кривые  min   

и  max )  не зависят, в отличие от построений, приведенных в рабо- 

те [21], от прогрессивности МРХ и, следовательно, не требуют пере-
счета в случае какого-либо другого выбора значения прогрессивности 
рассматриваемых МРХ. 
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Рис. 2. Геометрическая иллюстрация выбора номинала  
потребной МРХ линейно возрастающего типа: 

1 � линия 
 min

;  2 � линия 
 max

;  3 � линия 6;   4 � линия 

9;   5 � парабола 
opt opt ,i i i iG G G G


 9; 6 � номинал МРХ 

opt opt
; ;i iG G

 
  
 


 7 � максимум  МРХ, max 1, 2;   8 � минимум МРХ,  

min 0, 8   

 
Следующий шаг построения будет состоять в геометрической  

интерпретации семейств (2) линейно возрастающих МРХ. Для этого 
удобнее принять разбросы МРХ в пределах от 100 %  до %  
(0 ),  а также считать, что сами МРХ неограниченно возрас-

тают как функции времени по линейному закону ( ).ft   

Каждой точке  0 0 0,M x y  квадранта 0, 0i iQ G G
 

   
 


 можно 

поставить в соответствие МРХ    ЭУ
0 0 .G t y x t   Выбрав эту зави-

симость за номинал    ЭУ
0 ,G t  получим по формуле (2) целое семей-

ство МРХ: 

 
          0 0

ЭУЭУ 2
0 00, , 0, ,x y G t G t y x t               (4) 

отклоняющихся от номинальной зависимости в пределах разбросов 

0 .  При этом каждая кривая    ЭУG t  данного семейства  
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однозначно определяется точкой    2
0 0, ,x y x y    квадранта ,Q   

а тогда все семейство (4) в координатах ,ix G


iy G представляется

параметрической кривой 

2
0 ,x x      0.y y  

Исключив параметр ,  получим носитель этой кривой � ветвь 

параболы в квадранте ,Q  проходящую через точку 0:M  

0
0

.
x

y y
x

                                              (5) 

Если теперь на ветви (5) зафиксировать точку  0 0 0 0,M x y M      

и выбрать за номинальную МРХ зависимость    ЭУ
0 00 ,G t y x t    то 

это даст нам другое семейство МРХ: 

 
          0 0

ЭУЭУ 2
0 00, , 0, ,x y G t G t y x t            

но ту же самую ветвь параболы (5) в качестве его носителя, посколь-

ку 0 0

0 0

.
y y

x x





 На этом основании можно говорить об эквивалент- 

ности семейств  0 0,x y  и  0 0,x y   в математическом смысле: отноше-

ние    0 0 0 0, ,~x y x y    имеет место тогда и только тогда, когда 

0 0

0 0

,
y y

x x





 и это точно является отношением эквивалентности [27]. 

В результате все множество МРХ (2) разбивается на попарно непере-
секающиеся классы эквивалентных семейств типа (4). Геометрически 
это означает, что через каждую точку  0 0,x y  квадранта Q  можно 

провести одну и только одну ветвь параболы (5), представляющую 
целый класс эквивалентных семейств МРХ, представителем которого 
является, в частности, семейство МРХ  0 0, .x y

В нашем случае каждое допустимое по ограничениям (1) семей-

ство МРХ должно быть представлено парами значений , ,i iG G
 
 
 


 

принадлежащими области .Q  Следовательно, для построения та-
ких семейств годятся лишь те параболы (5), которые пересекаются  
с областью  . Зафиксируем одну из них. Выбрав на ней некоторую 
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точку  0 0, ,x y   назначим соответствующую ей МРХ в качестве 

номинальной:  
   ЭУ

0 00 .G t y x t   

Ввиду ограничений (3) на разбросы МРХ области   должен при-
надлежать весь сегмент выбранной параболы, определяемый пара-
метрически как 

2
0;x x     0;y y        min max, .                    (6) 

Может показаться, что данное построение всегда осуществимо.  
В действительности это не так, поскольку на прогрессивность МРХ 
ЭУ накладывают ограничение вида 

,                                              (7) 

где   � некоторое заданное значение.  

Учитывая, что оптимум МРХ имеет место при   [21], будем 
(так удобнее для последующих рассуждений) применять ограниче- 
ние (7) в виде 

.  

В предыдущих построениях ограничение (7) не учитывалось. По-
этому поставим в соответствие точкам области   значения   прогрес-

сивности МРХ ЭУ. Выбрав с этой целью пару значений , ,i iG G
 

 
 


 

выполним для соответствующей МРХ    ЭУ
i iG t G G t 


 расчет ГДВ 

ЛА из ПК. В результате получаем некоторое значение  ПКt  момента 

выхода ЛА из ПК. Приняв  ПК ,ft t  определяем максимальный расход 

ЭУ по формуле  

   ЭУ
f f i i fG G t G G t  


 

и соответствующее ему значение прогрессивности МРХ 

 ПК1 .f i

i i

G G
t

G G
   



  

Момент полного выгорания заряда ЭУ ( )ft  выбирают таким об-

разом, чтобы во всем диапазоне разбросов МРХ имело место нера-

венство  ПК .ft t  Но поскольку всегда  ПК ,ft t  то и    
Опираясь на данные рассуждения, построим в области   линию 

.  При систематическом подходе можно, задавшись некото- 
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рым набором значений параметра ,iG  подобрать из условия 

 ПК1 i

i

G
t

G  


 соответствующее значение ,iG


 выполнив (для 

определения  ПК )t  расчеты ГДВ ЛА из ПК. В качестве примера на 
рис. 2 приведены линии 6   и 9.   

Завершая построение, проведем в окрестности линии      

какую-нибудь параболу (5) с таким расчетом, чтобы ее сегмент, опи-
сываемый уравнениями (6), целиком попал внутрь области  . Центр 
этого сегмента, соответствующий значению 1   (т. е. некоторая па-

ра значений opt
0 ix G



 и opt
0 ),iy G  принимается за номинал. Выбрав 

значение ft  согласно сказанному выше, получаем потребную номи-

нальную МРХ ЭУ 

   ЭУ opt opt
0 ( ),i i fG t G G t h t t

 
    
 



                        (8) 

удовлетворяющую всем трем поставленным выше ограничениям 
(функция ( )h t  есть единичная «ступенька» Хевисайда [28]). 

Мы видим, что чем меньше допускаемая прогрессивность ЭУ  
(и проще такой ЭУ создать), тем ближе оказывается линия     по 

отношению к угловой точке области  , т. е. тем сложнее выполнить 
ограничения (1). На практике ограничения (1) на параметры ГДВ  
и ограничения (7) на прогрессивность ЭУ могут оказаться несовмес- 
тимыми с диапазоном разбросов МРХ (3). В этой ситуации неизбе-
жен поиск компромисса в наложении перечисленных ограничений,  
а роль излагаемой здесь теории состоит в том, чтобы дать ясное 
представление об их взаимном влиянии и об области возможного 
решения задачи. 

Оптимизация выбора параметров многошашечного трубча-
того заряда ЭУ для приближенного воспроизведения потребных 
линейно нарастающих по времени МРХ. Определение диаметра 
критического сечения и теоретической площади поверхности горе-
ния заряда по соотношениям внутренней баллистики ЭУ. 

Для ЭУ небольшого удлинения расчет на инженерном уровне га-
зодинамических параметров внутри КС достаточно проводить, осно-
вываясь на предположении о равномерном распределении этих пара-

метров по всему объему камеры. При этом температура в КС  ЭУ
КСT  

определяется в основном химическим составом и энтальпией образо-

вания твердого топлива, а от текущего давления    ЭУ
КСp t  в КС  
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зависит очень слабо [13, 14, 29]. Тем самым предположение о том, 
что в процессе работы ЭУ температура продуктов сгорания в КС 

принимает постоянное известное значение  ЭУ
КС ,T  является хорошим 

приближением, заменяющим использование уравнения энергии. 
Постоянство температуры среды в КС ЭУ влечет за собой также 

постоянство приведенной газовой постоянной  ЭУ
КСR  [13, 29] и тепло-

емкостей. Будем пользоваться значениями «замороженных» тепло-

емкостей [14], обозначив их как  ЭУ
КС ,pC   ЭУ

КС ;VC  аргументы в пользу 

такого подхода приведены в работе [30]. Тогда имеет место формула 
     ЭУ ЭУ ЭУ
КС КС КС ,p VC C R   и можно определить показатель изоэнтропы 

 
 

 

ЭУ
ЭУ КС
КС ЭУ

КС

.p

V

C

C
   

В инженерных целях достаточно предполагать, что в каждый мо-
мент времени фронт горения распространяется внутрь твердого топли-
ва строго по нормали к поверхности, имея во всех ее точках одинако-

вую скорость горения     КС .b bu t u p t  При таком предположении 

выгоревший свод (толщина слоя выгорания топлива) 

   
0

,
t

b be t u d                                        (9) 

получается всюду одинаковым, и текущую площадь поверхности го-
рения  bS t  можно вычислить как 

    .b b bS t S e t  

Здесь  b b bS S e  определяют заранее по известной геометрии 

начальной поверхности заряда. Закон горения топлива определяют 
экспериментально. Мы будем пользоваться степенной зависимостью 

  нач КС нач
КС нач 0 0 КС

ст ст ст

, ,
b

b
b b b b b

T p T
u p T u u p

T p T


    

       
    

  

где 0 ,bu  b  � постоянные, зависящие от конкретных свойств твер-

дого топлива; начT  � температура твердотопливного заряда в момент 

запуска ЭУ; стT  � «стандартная» температура окружающей среды; 

стp  � характерное значение рабочего давления в КС ЭУ. Функция 
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нач

ст
b

T

T

 
  

 
 есть фактор температурной чувствительности скорости го-

рения. Поскольку наша задача состоит в реализации заданной номи-
нальной МРХ ЭУ, считаем, что нач ст .T T  В этом случае 1,b   и за-

кон горения принимает более простой вид 

 КС 0 КС ,b
b bu p u p                               (10) 

где 0 0 ст .b
b bu u p  

Для того чтобы вычислять текущие значения давления в КС ЭУ, 
необходимо воспользоваться соотношением баланса массы в КС  
и уравнением состояния для продуктов сгорания. Очевидно, что ско-

рость изменения массы  ЭУ
КСm  продуктов сгорания в КС должна под-

чиняться соотношению 

 
   

ЭУ
ЭУ ЭУКС .b

dm
G G

dt
   

Здесь 
       ЭУ ,b b bbG t u t S t   

где b  � плотность твердого топлива, есть скорость прихода массы 

продуктов сгорания с поверхности горения, а величина 

         ЭУЭУ ЭУ1
крКС ,G t c p t

                        (11) 

где 

   

    
ЭУ ЭУ
КС КС

ЭУЭУ
ист КС

;
R T

c
B

 
 

     
 

 

 

ЭУ
КС
ЭУ
КС

1

2 1ЭУ
КС ЭУ

КС

2

1
B

 

   
 

 
  
   

 

есть массовый расход ЭУ через критическое сечение сопла.  
Ясно, что суммарный приход массы продуктов сгорания с по-

верхности горения на момент ft  полного выгорания заряда равен  

исходной массе заряда: 

           

   

ЭУ ЭУ ЭУ

0 0

0 0

.

f f

f bf

t t

b b b bb b b

t e

b
b b b b b b

m G t dt u t S t dt

de
S t dt S e de

dt

     

  

 

 
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Следовательно 

   ЭУ

0

,
bfe

b b b bS e de                                         (12) 

где  bf b fe e t  � максимальный свод заряда. 

В нашем случае МРХ ЭУ имеет прогрессивный характер, и, как 
следует из формулы (11), давление в КС также монотонно возрастает, 
что свидетельствует о накоплении массы продуктов сгорания внутри 
камеры ЭУ. Несмотря на это, как легко видеть из полных расчетов 

[13, 21], производная
 ЭУ
КСdm

dt
оказывается незначительной по срав-

нению с каждой из величин  ЭУ
bG  и  ЭУG . Тем самым мы приходим  

к уравнению Бори [13]    ЭУЭУ ,bG G  которым будем пользоваться  

в следующих формах: 

     
 

1

1
ЭУ 0
КС ЭУ

кр

;
b

b b b b
b

u c S e
p e




  
  


 

 
   

  
   

  
 

  
ЭУ ЭУЭУ

1КС кр кр
КС

0КС КС

.b
b

b bb b b b

p tG t
S t p t

c uu p t c u p t





 
  

  
    (13) 

С учетом формул (11), (13) фактическую прогрессивность МРХ 

ЭУ (в рассматриваемом случае )f

i

G

G
   можно связать с аналогич-

ным параметром, характеризующим площадь поверхности горения: 

 
 

 
 

1 1
КС 1max

КСmin

.
0

b
b

b
fb f

Sb
b i

p tS G

S p G

 


              
            (14) 

Свойства топлива определяют границы   ЭУ
КС

min
,p    ЭУ

КС
max

p  

диапазона рабочих давлений в КС ЭУ 

         ЭУ ЭУ ЭУ
КС КС КС

min max
,p p t p   

причем данное неравенство должно удовлетворяться для всех режимов 
работы ЭУ. По соотношению (11) разбросы (3) МРХ должны оста-
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ваться такими же в отношении давления в КС, поэтому для номиналь-
ного режима диапазон рабочих давлений получается следующим: 

      
  ЭУЭУ
КСКС ЭУ maxmin

КС
min max

.
pp

p t 
 

                      (15) 

Массовый расход ЭУ    ЭУ
0G t  задан формулой (8). Тогда для вы-

числения соответствующей зависимости для номинального давления в 

КС, которую будем обозначать    теор
КС ,p t  нужно лишь определиться  

с диапазоном критики ЭУ. Обычно следует ориентироваться на мень-
шие значения давления в КС (например, чтобы избежать дополнитель-
ного учета неидеальности смеси продуктов сгорания [17, 18, 31]).  
В таком случае из формул (8), (11), (15) получаем 

 
 

  
ЭУ opt
крЭУ min

кр ЭУ
КС

min

2 2 .ic G
d

p

 
 

 
 

Определившись с зависимостью    теор
КС ,p t  вычисляем по форму-

лам (10), (9), (13) соответствующие зависимости    теор ,bu t     теор ,be t  

     теор .b bS t S t  Последнюю зависимость ввиду монотонного воз-

растания    теор
be t  можно перестроить в функцию 

   теор .b bbS S e                                        (16) 

В итоге задача реализации заданной МРХ (8) сведена к решению 
задачи выбора формы заряда, воспроизводящей зависимость (16) 
(рис. 3). 

Основные геометрические соотношения, определяющие много-
шашечный трубчатый заряд. Рассмотрим воспроизведение зависи-

мости    теор ,b bbS S e  приведенной на рис. 3, при помощи заряда, со-

ставленного из однотипных трубчатых шашек (рис. 4). 
Три варианта трубчатых шашек, показанных на рис. 4, соответст- 

вуют прогрессивно увеличивающейся поверхности горения. В вари-
анте a  горению открыт только внутренний канал шашки, в вариан-
тах б и в горение дополнительно распространяется соответственно на 
один и оба торца.. На рис. 4 даны обозначения геометрических раз-
меров шашек заряда. Формулы для расчета площади поверхности го-
рения имеют простой аналитический вид [2�4], их легко получить из 
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наглядных геометрических рассуждений. При этом все три рассмат-
риваемых случая можно охватить одним соотношением 

       22
0 0 0 02 2

4
b

b b i b b b b e i b
i

S e d e L i e d d e
          

 

   0 0 02 ,e i b b b bh d d e h L i e                             (17) 

где bi  � число торцов, открытых для горения.  

 

Рис. 3. Площадь поверхности горения как функция толщины 
выгоревшего свода: 

1 � теоретическая зависимость 
   теор

;b bS e  2 � секущая линии 

   теор
;b bS e  3�5 � оптимальные приближения для вариантов горе-

ния   шашки   соответственно   по   внутреннему  каналу,  внутреннему 
каналу и торцу , внутреннему каналу и двум торцам 

 

Рис. 4. Варианты трубчатых шашек многошашечного заряда ЭУ 

б

в
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Причем горение с торцов шашки дает дегрессивный «вклад»  
в изменение площади горения, поэтому максимальный свод заряда 
должен определяться поперечными размерами шашки, т. е. 

0 0 02 .bf e i be d d L    

Задача состоит в таком выборе размеров 0 ,id  0 ,ed  0bL  отдельных 

шашек и общего их числа ,bN  чтобы воспроизвести заданную теоре-

тическую зависимость    теор
bbS e  наилучшим образом. В пер- 

вом приближении эта зависимость определяется максимальным сво-

дом заряда ,bfe  площадью поверхности горения    теор
0 0 ,b bS S  

   теор
bf bfbS S e  в начале работы ЭУ и в момент, предшествующий 

полному выгоранию топлива, а также объемом  ЭУ ,b  занимаемым 

топливом (рис. 5). Опираясь на геометрическую схему (см. рис. 4), 
это легко выразить соотношениями 

0 0 2 ;e i bfd d e                                        (18) 

 2 2
0 0 0 0 0;

4
b

b i b e i b
i

N d L d d S
     
 

                     (19) 

 0 0 ;b e b b bf bfN d L i e S                               (20) 

   ЭУ2 2
0 0 0 .

4 e i b b bd d L N


                            (21) 

Реализация зависимости    теор
bbS e  зарядом с шашками по вари-

анту a  (см. рис. 4). Начнем с заряда, шашки которого забронирова-
ны по всей поверхности за исключением внутреннего канала. В этом 
случае 0bi  , и условия (18)�(21) оказываются несовместными. Дей-

ствительно, соответствующая такому типу шашки зависимость 

 b bS e  линейна, а потому при выполнении условий (18), (19) будет 

представлять собой секущую  0 0
b

b b bf b
bf

e
S S S S

e
    по отношению 

к кривой    теор
bbS e  (см. рис. 3). Но тогда, вопреки условию (12), по-

лучаем 

         теор2 2
0 0 0

0 0

.
4

bf bfe e
эу

e i b b b b b b bb bd d L N S e de S e de


      
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Рис. 5. Геометрическая иллюстрация аппроксимации заданной 

зависимости 
   теор

:bS eb  

1 � площадь 
 ЭУ

3 ;bf bf bS e    2 � 
   теор

;b bS e  3 � площадь 

 ЭУ
2 0 3 ;b b bfS e      4 � площадь 1 0b bfS e   

 
Поступим в этой ситуации следующим образом. Построим ли-

нейную зависимость  0 0 ,b
b b bf b

bf

e
S S S S

e
      отличающуюся от  

секущей другими концевыми значениями 0 0 0b b bS S S   и 

,bf bf bfS S S   для определения которых воспользуемся условиями 

сохранения прогрессивности (14) и общего объема топлива: 

00

;bf bf
Sb

bb

S S

SS
 



       ЭУ 0

0

.
2

bfe
b bf

b b b bfb

S S
S e de e


  

 
 

Это дает выражения 

    1ЭУ 1
0 2 1 ;b Sb bfbS e

         0 .bf b SbS S    

Зависимость  0 0
b

b b bf b
bf

e
S S S S

e
      приведена на рис. 3 (кри- 

вая 3 ). 

После замены величин 0bS  и bfS  на 0bS  и bfS  формулы (18)�(21) 

становятся совместными. Из первых трех условий находим попереч-
ные размеры блоков 



Математические методы оптимального выбора линейно нарастающих� 

73 

0
0

0

2
;b bf

i
bf b

S e
d

S S






  0 0 2 .e i bfd d e 

Общее число bN  и длина 0bL  шашек могут быть выбраны с неко-

торым произволом в зависимости от желаемых габаритов всего заря-
да и оптимальной компоновки шашек. Выбрав подходящее значение 

,bN  найдем по формуле (20) значение 0
0

.bf
b

b e

S
L

N d




 

Реализация зависимости    теор
bbS e  зарядом с шашками по вари-

антам б или в (см. рис. 4). Формальный подход. Рассмотрим трубча-
тые шашки, горящие кроме внутреннего канала, также по одному или 
обоим торцам, полагая в условиях (19), (20) соответственно 1bi   и 

2.bi   

Из формулы (18) вытекает соотношение 

    2 2
0 0 0 0 0 0 04 .e i e i e i bf i bfd d d d d d e d e       

Тогда условия (19)�(21) могут быть представлены следующим 
образом: 

  0
0 0 0 ;b

i b b bf i bf
b

S
d L i e d e

N
  


                        (22) 

  0 02 ;bf
i bf b b bf

b

S
d e L i e

N
  


                       (23) 

 
 ЭУ

0 0 .b
i bf b

b bf

d e L
N e


 


                              (24) 

Разделим соотношения (22), (23) почленно на соотношение (24): 

 
 

0 0 0 0

0 00 0

1 2
0 0

1 3 ,

i b b bf i bf b bfi

i bf bi bf b

bf b bf b

i bf b Sb

d L i e d e i ed

d e Ld e L

e i e

d e L

 
  




        

 

 

  
 

0 0
1 2

0 0

2
,

i bf b b bf
b

i bf b

d e L i e

d e L

 
  


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где согласно (14) 1

0

,bbf
Sb

b

S

S
     а кроме того, введены новые 

обозначения 

 ЭУ
;bf bf

b

b

S e
 


 

1
0

1 ;bf

i bf

e

d e
  


   2

0

1 .b bf

b

i e

L
                            (25) 

Для величин формул (25) составляем квадратное уравнение: 

1 2 3 ;b   


    1 2 ;b                               (26) 

2 3 0.b
b

         
                            (27) 

Заметим, что значения величин 1,2  определяются значениями 

корней уравнения (27), но не формулами (25), в которых параметры 

0id  и 0bL  неизвестны. Иными словами, физический смысл формул 

(25) требуется еще установить. Для анализа знака дискриминанта 
2

3 4b
bD

      
 уравнения (27) обратимся к геометрической ин-

терпретации величин b  и   (см. рис. 5). Очевидно, что 

 

 

   

ЭУ
3 3

ЭУ ЭУ ЭУ
1 ,bf bf b

b

b b b

S e   
    

  
 

 

 

   

ЭУ
0 2 2
ЭУ ЭУ ЭУ

1 .b bfb b
b

b b b

S e   
     

   



             (28) 

Но тогда получим 

         

 
   

2 2

3 32 2 2
ЭУ ЭУ ЭУ ЭУ ЭУ

2

2 3 2
ЭУ ЭУ

4
2 4 1 4

4
0.

b b b b b

b b

D
                    
              

      
   

 

Следовательно, уравнение (27) всегда имеет два положительных 
корня. Более того, при подходящей нумерации корней имеем 
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 
2

1 ЭУ

1 1
3 1 1;

2 22

b

b

D D
            

 
 

   

2

2 32 2
2 ЭУ ЭУ ЭУ

41 1
3 1 1,

2 2
b

b b b

D

                            


 

т. е. эти корни могут быть отождествлены с величинами 1,2  в фор-

муле (25). Тем самым находим значения 

0
1

1
1 ;

1i bfd e
 

    
   0

1

1
1 ;

1e bfd e
 

    
   0

2

.
1

b bf
b

l e
L 


         (29) 

Подставив эти выражения в формулу (24), получаем значение 

    ЭУ
1 2

3

1 1
,b

b
b bf

N
l e

   



                               (30) 

которое, конечно, должно быть округлено до целочисленного значения. 
Используя преобразования 

    
2 3

1 2 1 1 2 2 ЭУ
1 1 1 2 ,b

b

b

  
               

 
 

основанные на формулах (26), (28), получаем также следующее вы-
ражение для :bN  

2 3
3

.b
b bf

N
l e

  



                                         (31) 

Описанная выше процедура и доказательство ее корректности га-
рантируют существование у системы уравнений (18)�(21) при 0bi   

физически осмысленного решения. Однако результаты расчетов по 
формулам (29), (30) оказываются не слишком удовлетворительными. 
Поэтому продолжим исследование и проанализируем аппроксими-
рующие свойства зависимости (17) по отношению к заданной зави-
симости (16). 

Мы видим, что зависимость (17) при 0bi   есть парабола. Вы-

полняя несложные преобразования, получаем: 

  2
2 1 0;b b b bS e a e a e a    



А.В. Плюснин 

76 

 
 

2 2
0 0 0 0 0 0

1 0 0 2

4 .

2 , 3

b
b b i b e i

b b b i b b

i
a S N d L d d

a N L i d a i N

       
 

     

                     (32) 

В таком случае задачу удовлетворения условиям (18)�(21) можно 
интерпретировать в виде абстрактной задачи построения на отрезке 

 0;   дуги параболы   2
2 1 0 ,y x a x a x a    принимающей задан-

ные значения ,    на концах отрезка и ограничивающей фигуру за-

данной площади:  
0

.y x dx


   

Формулируя перечисленные условия аналитически, получаем  
систему алгебраических уравнений относительно коэффициентов 1a  

и 2a  (коэффициент 0 )a    

2
1 2

2 3

1 2

,

2 3

a a

a a

    

 

  


 

всегда имеющую однозначное решение, определяемое следующими 
формулами: 

  

  

0

1 2

2 3

,

2
3 2 , .

3
2

a

a

a


 

      

 


         

                           (33) 

Возвращаясь к рассматриваемой задаче, следует принять ,bfe   

0 ,bS   ,bfS    ЭУ ,b    ,bx e  .by S  Сопоставляя далее вы-

ражения (32) и (33) для соответственных коэффициентов парабол, 
получаем: 

    ЭУ 2 3
03 3

1
2 ;b b bf bfb

b bf b bf

N S S e
i e i e

 
    

 
 

 2 2 0
0 0 0 0 ;

4
b b

i b e i
b

i S
d L d d

N
  


 



Математические методы оптимального выбора линейно нарастающих� 

77 

2 3
0 0 2

2 3

21
.b b i

bf

L i d
e

 
 

 
 

Первая из этих формул идентична формуле (31). Простота ее по-
лучения новым способом указывает на то, что ее можно было вывести 
непосредственно из формул (22)�(24) (в этом легко убедиться, выпол-
няя над этими формулами действия, соответствующие выражению 

   ЭУ
02 ).b bf bfb S S e    Однако в определении остальных искомых 

величин упрощений нет. 
Посмотрим теперь внимательнее на формулу (31) для ,bN  из ко-

торой следует, что при сближении значений площадей 2  и 3  (за-

висимость  b bS e  приближается к линейной) число шашек bN  стре-

мится к нулю, а при уклонении 2  от 3  на  1O  по отношению  

к bfe  величина bN  быстро возрастает. Поэтому, несмотря на внеш-

нюю «физичность» решения (29) и (30), величины ,bN  0 ,bL  0 ,id  0ed  

ему соответствующие, играют скорее всего роль наилучших коэффи-

циентов аппроксимации заданной зависимости    теор
bbS e  зависимо-

стями вида (17). То, что коэффициенты аппроксимации могут быть 
интерпретированы как геометрические параметры заряда, связано, 
по-видимому, с качественным сходством аппроксимируемой и  
аппроксимирующей зависимостей. 

Реализация зависимости    теор
bbS e  зарядом с шашками по вариан- 

там б или в (см. рис. 4). Параметрический подход. Поскольку стрем-
ление одновременно удовлетворить всем четырем условиям (18)�(21), 
по всей видимости, приводит к плохим результатам (напомним, что в 
случае a  эти условия вообще оказались несовместными), откажемся 
от одного из них, получив в распоряжение один свободный параметр. 
В качестве такого варьируемого параметра выберем величину 0 ,bL   

а из условий (18)�(21) откажемся от условия (20), которое при выпол-
нении остальных условий будет выполняться приближенно. Тогда 
оставшиеся три условия легко разрешаются. Действительно, исключив

0ed  прежним приемом, получаем: 

  
   

0 0 0 0 0

0 0 0 ;

b b i b b bf b bf i bf

b b b bf i bf b bf

S N d L L e i e d e

N L i e d e L e

     

    
 

   ЭУ
0 0b b bf i bfb N L e d e     
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или 

   0
0 0 0 ;b

b b bf i bf b bf
b

S
L i e d e L e

N
   


 

 
 ЭУ

0
0

.b
bf i bf

b b

e d e
N L


 


 

Почленным делением приходим к соотношению 

 
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b i bf Sbb

i e e S e

L d e


   

 
 

позволяющему получить в итоге выражения 

1

0
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b
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i ed
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
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 

    
1

0

0

1 1;b bfe
b

bf b

i ed

e L


 

     
 

  

 ЭУ

2
00

1 .b bfb
b b

bb bf

i e
N

LL e

 
    
  

                              (34) 

Рассчитанные по формулам (17) и (34) зависимости  b bS e  при-

ведены на рис. 3 (кривые 4   1bi   и 5   2bi  ). 

Пример численного моделирования ГДВ ЛА и внутренней 
баллистики ЭУ при оптимальном выборе МРХ и параметров 
многошашечного трубчатого заряда. Для заданных условий ГДВ 
ЛА из ПК и заданных ограничений (1), (3), (7) на параметры ГДВ и 
на прогрессивность ЭУ определим оптимальную номинальную МРХ 
(8). По результатам расчетов ГДВ с охватом всего диапазона (3) раз-

бросов МРХ получаем значения скорости выхода ЛА из ПК  ПК
вых ,V  

максимального ускорения ЛА в ПК A  и сопоставляем их с ограниче-
ниями (1). В обобщенном виде эти результаты приведены в таблице 
для двух значений прогрессивности ЭУ .  В таблице приводятся 

также максимальные отношения давления раскупорки ПК  ПК
выхp   

к абсолютному гидростатическому давлению Hp  на глубине осу-

ществления ГДВ. 
Располагая теоретической номинальной МРХ (8), находим в со-

ответствии с изложенной выше теорией оптимальные значения гео-
метрических параметров заряда в целях практической реализации 
этой МРХ. При этом для вариантов б и в горения трубчатых шашек 
применяются формулы (34). Конкретный выбор длин шашек 0bL  
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обусловлен практическими соображениями и почти не сказывается 
на значениях внутрибаллистичеcких параметров и параметров ГДВ 
(небольшие изменения значений этих параметров связаны с округле-
ниями значений ).bN  

Результаты расчетов основных параметров ГДВ 
и внутренней баллистики ЭУ 

Прогрессивность 
ЭУ 

Воспроизведение 
теоретической 

МРХ 

Параметры ГДВ 
Давление 
в КС 

 

  
ПК

вых

ПК
вых

min

V

V
  ПК
max

max

A

A
 

 ПК
вых

H

p

p
 

 ЭУ
КС

ст

p

p
 

6, 5   

Точное 1, 01  1, 04  1,83  � 

0bi   0, 99  1, 03  1,87  1, 77  

1bi   1, 04  1, 04  1, 90  1, 54  

2bi   1, 03  1, 04  1,88  1, 50  

9, 0   

Точное 1, 07  0, 97  1, 92  � 

0bi   1, 07  0, 96  1, 97  2, 58  

1bi   1,11  0, 96  1, 93  2, 09  

2bi   1,11  0, 96  1, 94  2,10  

 
После того как определены параметры заряда, выполняем расче-

ты внутренней баллистики ЭУ, получая на выходе в качестве основ-
ного результата практически реализуемые номинальные МРХ. По 
ним в диапазоне разбросов (3) выполняем расчеты ГДВ, аналогичные 
расчетам, проводившимся для теоретической номинальной МРХ. Ре-
зультаты этих расчетов также приведены в таблице. Максимальные 
значения реализующегося в КС ЭУ давления, отнесенного к стан-
дартному значению ст 100 бар,p   указаны в последней графе. 

Результаты расчетного моделирования подтверждают изложенную 
выше теорию. Сопоставляя данные таблицы с данными, приведенны-
ми на рис. 2, 3, видно, что, например, при прогрессивности ЭУ 6,5   
невозможно полностью выполнить ограничения (1), (3), (7). Можно 
также заметить, что применение шашек, горящих не только по внут-
реннему каналу, но еще хотя бы по одному из торцов, позволяет точ-
нее воспроизвести теоретическую площадь поверхности горения, а, 
следовательно, и теоретическую МРХ, что дает лучшие результаты в 
отношении параметров ГДВ и внутренней баллистики ЭУ. 
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Отметим, что формулы, рекомендуемые в работе [4] для опреде-
ления параметров многошашечного трубчатого заряда (безотноси-
тельно к проблематике данной работы), учитывают требования  
к полной массе (объему) заряда и к его максимальному своду, но не 
учитывают требование к его прогрессивности. Это означает, что ис-
пользование рекомендаций работы [4] для определения МРХ ГДВ не 
обеспечивает, в общем случае выполнения ограничений, наклады- 
ваемых на газодинамические параметры. 

Выводы. Теоретически определены линейно нарастающие по 
времени массорасходные характеристики энергоустройства газоди-
намического выброса ЛА из пускового контейнера и реализованы за-
данные ограничения на параметры. Выполнен выбор оптимальных 
геометрических параметров многошашечного трубчатого твердотоп-
ливного заряда для практического воплощения подобных массо-
расходных характеристик. Математически обоснованы теоретические 
построения, дополняемые геометрической интерпретацией и приме-
ром численных расчетов. 
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Mathematical methods for optimal selection  
of linear increasing over time mass-flow characteristics  
of energy devices ensuring aircraft gas-dynamic ejection 
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The paper proposes the theory for optimized selection of linear increasing over time 
mass-flow rates of energy devices designed for craft gas dynamic ejection from a launch 
container under the specified restrictions on parameters. Theory is also proposed for op-
timized selection of geometrical parameters of multigrain tubular charge for implement-
ing these mass-flow rates. A visual geometric interpretation of theoretical developments 
is presented, and their practical feasibility is confirmed by numerical simulations of pa-
rameters of gas-dynamic ejection and internal ballistics processes. 
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