539.3 Modeling of coupling effects in the problem of pulsed loading of thermoelastic media

Valishin A. A. (Bauman Moscow State Technical University), Kartashov E. M. (MIREA - Russian Technological University/Moscow Technological University)

THERMOELASTICITY, DYNAMIC PROBLEM, COUPLING OF DEFORMATION AND TEMPERATURE FIELDS, GLASS, STEEL, CONCRETE, REINFORCED CONCRETE, FIBERGLASS, POLYVINYLACETALS


doi: 10.18698/2309-3684-2019-3-318


Deformation of solids under the action of non-stationary external mechanical, thermal or other effects is accompanied by the inverse thermodynamic effect of the release of additional heat due to internal friction, i.e.a change in the temperature field. This causes additional deformation, which in turn leads to the release of heat. This effect of the interaction of mechanical and temperature fields is called the connectivity effect. The consequence of this effect is the appearance of heat fluxes leading to an increase in the entropy of the thermodynamic system and thermoelastic energy dissipation. The purpose of the work is to study the influence of the interaction of deformation and temperature fields for different materials. For “classical” materials, such as metals and glass, the thermodynamic effect of the interaction of deformation and temperature fields is insignificant and it is usually neglected in the calculation, design and operation of structures. For some polymer materials such as various polyvinylacetals, this effect is significant; it must be taken into account when creating composite materials on their basis and when designing products and structures of them. A dynamic coupled problem of thermoelasticity for an elastic layer of various structural, consumer and construction materials under rapid application of a normal compressive load to thermally insulated surfaces is considered. It is shown that for glass and steel temperature increasing due to the interaction of the deformation and temperature fields being really negligible is 0.180–0.183 K (or 0.061–0.062 %). For polymers, first of all, from the class of polyvinylacetals, it is substantial, and it can no longer be neglected.


Kartashov E.M. Izvestiya Rossiyskoy akademii nauk. Energetika – Proceedings of the Russian Academy of Sciences. Power Engineering, 2004, no.4, pp.146–159.
Kovalenko A.D. Osnovy termouprugosti [Fundamentals of thermoelasticity]. Kiev. Naukova Dumka Publ., 1970, 308 p.
Dimitrienko Yu.I. Journal of Transport in Porous Media, 1997, vol.27, no 2, pp.143–170.
Dimitrienko Yu.I. International Journal of Applied Composite Materials, 1997, vol, 4, no.4, pp.219–237.
Dimitrienko Yu.I. International Journal of Applied Composite Materials, 1997, vol.4, no.4, pp.239–261.
Dimitrienko Yu.I. Composites. Part A: Applied Science and Manufacturing, 1997, vol.28A, pp.453–461.
Dimitrienko Yu.I. Composites. Part A: Applied Science and Manufacturing, 1997, vol.28A, pp.463–471.
Dimitrienko Yu.I. International journal of heat and mass transfer, 1997, vol.40, no.3, pp.699–709.
Dimitrienko Yu.I. International journal of heat and mass transfer, 1997, vol.40, no.7, pp.1701–1711.
Dimitrienko Yu.I. European Journal of Mechanics – A/Solids, 1998, vol.17, no.2, pp.305–322.
Dimitrienko Yu.I. European Journal of Mechanics - A/Solids, 1998, vol.17, no.2, pp.323–337.
Dimitrienko Yu.I. International Journal of Applied Composite Materials, 1998, vol.5, no.4, pp.257–272.
Dimitrienko Yu.I. Composites Science and Technology, 1999, vol.59, pp.1041–1053.
Dimitrienko Yu.I. Composites. Part A: Applied Science and Manufacturing, 1999, v.30A, pp.82–86.
Dimitrienko Yu.I. Journal of Transport in Porous Media, 1999, vol.35, no.2, pp.69–75.
Dimitrienko Yu.I. Composites. Part A: Applied Science and Manufacturing, 2000, v.31A, pp.591–598.
Dimitrienko Yu.I., Minin V.V., Korepanov A.S. Vestnik MGTU im. N.E. Baumana. Seria Estestvennye nauki – Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2005, no.1, pp.102–116.
Dimitrienko Yu.I., Minin V.V, Syzdykov E.K. Mekhanika kompozitsionnykh materialov i konstruktsii –Mechanics of composite materials and structures, 2011, vol.17, no.1, pp.71–91.
Dimitrienko Yu.I., Minin V.V., Syzdykov E.K. Composites: Mechanics, Computations, Applications, 2011, vol.2, pp.147–169. DOI: 10.1615/CompMechComputApplIntJ.v2.i2.50
Dimitrienko Yu.I., Minin V.V, Syzdykov E.K. Matematicheskoe modelirovanie — Mathematical Models and Computer Simulations, 2011, vol.23, no.9, pp.14–32.
Matematicheskoe modelirovanie i chislennye menody — Mathematical Modeling and Computational Methods, 2018, no.3 (16), pp.3-21
Landau L.D., Lifshits E.M. Teoriya uprugosti [Theory of elasticity]. Moskva, Nauka Publ., 1968, 215 p.
Kartashov E.M. Tonkie himicheskie tehnologii — Fine chemical technology, 2018, vol.13, no.2, pp.81–90.
Kartashov E.M. Analiticheskie metody v teploprovodnosti tverdykh tel [Analytical methods in the thermal conductivity of solids]. Moscow, Vysshaya shkola publ., 2001, 540 p.


Валишин А.А., Карташов Э.М. Моделирование эффектов связанности в задаче об импульсном нагружении термоупругих сред. Математическое моделирование и численные методы, 2019, № 3, с. 3–18.



Download article

Количество скачиваний: 52